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Abstract 

The topic of this paper is an attempt to build a systematic approach to reinforcement learning agent 
tuning by conducting a number of experiments in a custom grid world environment. This environment 
implements agent vision as a state representation instead of absolute position making it more complex 
and similar to computer vision state representation while still keeping it simple enough to be able to 
adjust it. A series of experiments is conducted with various hyperparameter configurations and results 
are evaluated. In the end, a proposal for the new adaptive parameter method regarding memory sample 
size and capacity is discussed. 
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1 Introduction 
Even though the majority of classic reinforcement learning (RL) algorithms, such as k-armed bandits and 
table Q-learning [Sut18] are somewhat deterministic and do not have many parameters, with recent 
improvements in machine learning algorithms and successful applications of deep neural networks RL 
algorithms got the second wind in the light of much more complex function approximators which neural 
networks can successfully applied as. 

One of the most complex aspects of applying machine learning algorithms based on neural networks in 
general and deep RL algorithms in particular is the fact that these algorithms have vast amount of 
hyperparameters – parameters, which affect either neural network architecture or the algorithm learning 
process. This makes it hard to get these parameters right from the start without trial and error which in 
turn adds a great deal of overhead between algorithm installation or implementation and its usage phases. 

Therefore, the there is an emerging need for methodologies which would allow to reduce the time that is 
needed for algorithm tuning instead focusing more on implementation details of the task at hand. The 
broader the scope of the given methodologies will help make them more general, in turn providing a 
framework for RL algorithm tuning as a system of method which could be applied to specific classes of 
algorithms. 

Hence the aim of this work is to try and systemize already existing methods of machine learning 
hyperparameter tuning in the realm of reinforcement learning in particular, mainly because of the current 
active developments in this field in comparison to classification algorithms and computer vision. The aim 
of this work is going to be achieved through the review of already existing state of the art RL algorithms 
in discrete state and action spaces [Sut18] to be able to lay down the groundwork for this kind of 
methodology, because this is the simplest type of action space available in reinforcement learning. 
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Presented solution in this paper consists of a custom grid world environment, which implements RL agent 
area of vision of nearby grids, area of which can be customized, providing adjustable algorithm 
hyperparameter. In the end there are conclusions regarding the effects of hyperparameter adjustments 
and an effort to systemize these effects by concluding them into a methodological framework. 

The reinforcement learning agent is implemented using a simple deep Q-learning algorithm in order to 
make it easier to observe and analyze changes which occur with the change of algorithm hyperparameters. 

In order to systematically conduct experiments and record their results a custom software 
implementation is used, which allows to run multiple experiments for result aggregation and averaging 
which in turn provides a statistically more robust representation of experimental results. 

Before running experiments, a methodology developed, which provides a systematic approach to attribute 
changes and monitoring of the effects of those changes. 

In the last part of the paper experiments are conducted and results are analyzed. After that there is a 
discussion, concluding experiment results and highlighting further scope of the work. 

2 Concepts and Methods 
Since its resurgence in popularity with the advances of deep learning, reinforcement learning algorithms 
have seen a number of improvements over the last years, such as approaches to learning without 
exploration [Fuj19], multi-agent learning [Foe16], [Doy02], self-learning [Eva17] and knowledge transfer 
[Geo03]. In this part of the paper basic description of reinforcement is given along with the highlights of 
current state of the art techniques in the area. 

2.1 The concept of reinforcement learning 

In very broad terms reinforcement learning problems involve learning what to do in context of how to 
map situations to actions so as to maximize a numerical reward signal [Sut18]. In can be represented as a 
closed-loop system because by the nature of the algorithm current alterations in its strategy affect how it 
will act down the line (fig. 1). 

 
Figure 1: Typical agent–environment interaction in reinforcement learning [Sut18]. 

As a research direction, reinforcement learning provides a branch of machine learning alongside 
supervised and unsupervised learning and on surface they might seem similar, especially when neural 
networks are applied. However, it is worth mentioning that reinforcement learning is much less related 
to traditional machine learning tasks of classification, instead using advances in those fields as building 
blocks for higher efficiency and applicability. 
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For example, reinforcement learning algorithms enjoy advances in neural network stochastic gradient 
descend algorithm modification such as Adam [Kin15] and more recently Adagrad (adaptive gradients) 
[Duc11] which can provide higher convergence speed. 

More impressively advances in deep learning have found their application in reinforcement learning with 
the use of convolutional neural network architectures [Cou16] which give artificial intelligence agents to 
learn from image state representations, such as camera feeds or computer game screenshots [Mni13]. 

2.2 Current advancements 

Current advancements in reinforcement learning are trying to solve newly occurring problems which will 
allow to use them in a wider range of applications, the most prominent being robotics. New developments 
are focusing on continuous state and action space representations while also making efforts in improving 
learning algorithms using approaches specific to this type of machine learning. 

One of the earliest attempts at improving learning performance were experimented with by employing 
multi-agent learning [Doy02], which is still a somewhat relevant research topic [Foe16]. This approach 
focuses on the usage of multiple reinforcement learning agents which could be connected through a 
common knowledge basic (usually a neural network) or some other means. Such approach facilitates 
knowledge transfer, which has been studied in such works as [Geo03] and more recently in [Che15], which 
provides a framework for the usage of pre-trained neural network as a starting point and extending it with 
a higher amount of neurons. 

To reinforcement learning specifically there is a problem of policy acquisition, which can be affected in a 
number of ways. Works such as [YNg03] lay the groundwork for research in the field of reinforcement 
learning agent reward shaping and policy search algorithms. In their work [YNg00], authors propose an 
algorithm called Pegasus which allows search for an optimal policy via transformation of a partially 
observable Markov decision process (POMDP) to the one, where all transitions are deterministic. After 
that they provide a way of approximating newly formed POMDP’s initial state distribution. 

More recently with advances in robotics a problem of learning without exploration [Fuj19] emerged, 
coming from the high cost and dangers of stochastic policy search in real environments new methods 
have been developed, which allow agent to learn without exploration or by watching an a human [Gab19] 
do a number of examples first, which can guide the algorithm to converge faster to an optimal policy 
without the risks of costly damage [Abb10]. Another approach to this type of learning could be 
implemented by integrating human feedback instead of doing a number of specific examples [Gri13]. 

Alongside all those methods an interesting approach was proposed in [Eva17], where authors show how 
reinforcement learning agent can use self-supervision in order to receive more feedback from its actions 
through frequent rewards which reflect additional losses which reflect current agent performance 
avoiding the problem of sparse rewards which in turn aids in representation learning (state-action pairs). 

2.3 Problem area 

Current machine learning algorithms become more and more complex, however there is a lack of research 
in how state representation and memory capacity affect the learning process along with classic 
hyperparameters, such as neural network learning rate (which is usually not specifically linked to 
reinforcement learning) and discount rate – instead there is a notion that modern algorithms “just work” 
without much systematic approach. 
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Recently there have already been attempts to stand back and rehearse what is already known about 
machine learning algorithms [Jin19] where authors try to reflect on why simple algorithms work well. This 
work is an attempt to continue to widen systematic approach to reinforcement learning algorithm tuning. 

2.4 Methodology 

In this work several experiments are conducted in a specially built grid world environment which provides 
reinforcement learning agent with a state representation in a form of vision around them in contrast to 
classic state representation in such world which is usually an absolute position. The grid world is used 
instead of complex computer vision task because it is a much easily controllable environment, hence it 
provides an opportunity to get better insights. The aim of the experiments is to verify and try build a 
systematic approach to agent hyperparameter choice, such as learning rate, future reward discount factor 
and state space dimensionality through the tweaking of agent vision. The computer program will run the 
same experiment multiple times, averaging historic values of model training losses and agent rewards, 
which improves statistical robustness of gathered data. 

3 Experimental Study 
3.1 Proof-of Concept Implementation 

Grid world configuration is stored in a separate text file which gives the flexibility of changing it without 
the need to change program code. Each world has an accompanying JSON file, which describes idle reward 
for agent standing on a free tile and the type of bounding tile. Each tile is represented as an ASCII symbol, 
making it easy to render in terminal. In the world description file, there is also a list of entity descriptions 
which list entity symbols and their associated name and reward, when agent steps on it. 

 

a) View during policy learning 

 

b) View when a policy has been learned 

Figure 2: Developed program view, showing grid world, agent policy and its vision in two cases: during policy learning (a) and when 
a policy has been learned (b). 
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Fig. 2 shows program view which renders given grid world, current agent policy (on the right) and agent 
vision around them (under the grid world). Agent implements a simple deep Q-learning (DQN) algorithm 
with additional target neural network [Her19] which provides higher stability during learning process. 

Environment is read from a text file and each non-empty grid is transformed into an entity – an object 
abstraction, which allows other objects to interact with this grid. For example an entity which is 
represented with “W” is a wall and agent will not be able to move through it, while entity marked as “H” 
is a hole in a similar way as in a classic frozen lake grid world [Bro16]. 

Agent state representation is a two-dimensional array where the first dimension corresponds to a grid in 
agent’s field of view while the second dimension is one-hot encoded representation of a given grid. This 
array is further flattened in order to match the input of a fully connected neural network. For instance, 
with a field of view of 5x5 and 4 distinct grid types, the state representation size is a vector with the length 
of 100, making it impractical to use table, hence why in this work a DQN approach is used. 

3.2 Experiments 

All experiments were carried out in a maze grid world (Fig. 2) where agent is not be provided any aid in 
the form of intermediate rewards (i.e. crumbs along the path). This will ensure long-term reward 
prioritization of the agent. In fact, as it will later be shown, providing such intermediate rewards manually 
might even make learning process worse, essentially confusing the agent about correct reward. 

Change of parameters was done by starting with a first set of parameters (experiment 1 in table 1) and then 
changing one parameter until performance (average reward) improves. After a new value of parameter is 
found another parameter is tweaked. If the new value of parameter doesn’t improve performance, the next 
set of experiments can use previous values of the parameters. 

First set of experiments was changing of memory sample size – the number of experiences that agent’s 
neural network is learned on, effectively acting as a learning data set. After an optimal memory sample 
size is found – the one after agent is not able to find a better reward, then other hyperparameters are 
tuned – such as future rewards discount rate [How15], making an attempt to further improve learning 
performance. 

Because the environment is deterministic, agent learning rate of 1 is optimal, hence it is not changed 
during the experiments. In the same fashion the learning rate of neural network does not affect the 
perception of the agent, hence it is left unchanged at the value of 0,001. Over the course of the experiments 
parameters which affect agent’s perception and memory are tuned, such as memory replay sample size 
and reward discount factor. 

3.3 Experiment 1 

In the first experiment the value of replay memory sample size is changed while memory capacity, vision 
range and discount rate stay the same. Fig. 3 shows how different values of memory sample size affect 
reinforcement learning agent learning process, especially judging by the reward graph. 

Replay memory serves the role of neural network training data set where the data is sampled from the 
environment as state representations, taken actions, reward and the next state at a given time. One such 
sample is usually represented as a vector (𝑠, 𝑎, 𝑟, 𝑠′) while memory contains a number of the most recent 
observations. 
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a) Memory sample size: 32 

 

b) Memory sample size: 64 

 

c) Memory sample size: 128 

Figure 3: Differences in loss and average reward depending 
on memory sample size 

 

a) Discount factor: 0.50 

 

b) Discount factor: 0.25 

 

c) Discount factor: 0.10 

Figure 4: Differences in loss and average reward depending 
on discount factor

Judging by the Fig. 3 there is a visible change in learning performance of the agent with regard to the 
obtained reward. It also makes the learning process unstable, making big jumps in reward over time. This 
suggests that there is a minimum required sample size for the agent, which enables a more stable learning 
process. The downside of picking high memory sample size is slower learning due to the higher 
computational demand. Because of this it is not trivial to pick the correct sample size, since the typical 
rule of 70/30 from supervised learning does not work in reinforcement learning. In this experiment the 
optimal sample size is 64, not only because it is faster, but the average reward is even higher with this 
sample size. 

3.4 Experiment 2 

After the optimal sample size value is found it is chosen as a baseline for the second experiment, where 
discount rate is changed. On Fig. 4 it is visible that the less the discount factor becomes, the harder it is 
for the agent to learn an optimal policy. In case when discount factor is 0.10, the agent reaches plateau in 
reward rather quickly without further improvement. This further reinforces the fact that in most cases the 
value of discount factor should be nearing 1. It is worth noting that even when the discount factor is twice 
as smaller at the value of 0.50 (Fig. 4a) agent almost manages to get to the highest reward (comparing to 



‚Advanced Seminar‘ Summer 2020 

 

 7 

Fig. 3b). However, it takes more time to get to the plateau, which suggests that because of the lower 
discount factor agent rejects useful information during training. 

3.5 Experiment 3 

The next experiment involves changing memory capacity, instead of sample size. This affects agent “long-
term” memory , which in turn affects how many previous experiences the agent “remembers”, however 
too large of memory capacity not only consumes more computer memory, but can also potentially affect 
the learning performance if the random batch of memory samples will be picked from older experiences 
– focusing agent’s learning on previous experiences which it might has already learned, but still are present 
in memory. On Fig. 5 six experiments are shown with varying memory capacity. 

 

a) Memory capacity: 128 

 

b) Memory capacity: 256 

 

c) Memory capacity: 512 

 

d) Memory capacity: 1024 

 

e) Memory capacity: 2048 

 

f) Memory capacity: 4096 

Figure 5: Differences in loss convergence and average reward at different memory capacities 

There is a noticeable learning performance degradation (in terms of average reward), when memory 
capacity is increased past the value of 1024, which suggests that the increase in memory capacity makes it 
difficult for the agent to pick more recent experiences, in turn slowing down the learning process. Table 1 
shows relation between memory size, loss convergence time in steps and average reward achieved by the 
time of convergence. 
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Run No. Memory size Loss first convergence 
(in steps) 

Average reward at 
convergence point 

Final approx. 
average reward 

3a 128 300 -2.50 2.50 
3b 256 500 -2.00 3.00 
3c 512 1500 -2.00 6.00 
3d 1024 2500 0.00 7.00 
3e 2048 1500 -1.00 1.00 
3f 4096 2000 -1.25 2.50 

Table 1: Number of steps until model error first convergence and respective average reward 

3.6 Experiment 4 

In this experiment the vision range of the agent was changed first to 3 units (fig.  6a) and then to the 
smallest possible range of 1 unit (fig. 6b). While giving extra information around the agent did not improve 
its learning performance, restricting visible area made it impossible for the agent to learn in the second 
case.

 

a) Vision range: 3 units 

 

b) Vision range: 1 unit 

Figure 6: Differences in loss and average reward with various agent vision ranges 

This could have been the case because of the identical state representations due to the limited range of 
agent vision. Fig. 7 shows a case when two different states have identical state representations, even 
though agent must distinguish between them in order to reach the goal. By decreasing the dimensionality 
of the state agent loses ability to adequately judge their surroundings and therefore are incapable of 
choosing correct actions. 

  
Figure 7: Two different states with identical state representations 

3.7 Experiment 5 

In the final experiment the optimal values of memory capacity and sample size along with discount rate 
are chosen. In such configuration a crumb is added along the path to the goal (Fig. 8), which gives 
additional reward to the agent along the path and in theory should help it find a better policy faster. 
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a) Crumb inside the corridor 

 

b) Crumb outside the corridor 

Figure 8: Crumb added on a path to the goal. Marked area highlights learned policy inability to determine correct path 

 

a) Performance with a crumb placed inside 
the corridor 

 

b) Performance with a crumb placed 
outside the corridor 

Figure 9: Loss and average reward in an environment with an added crumb 

However, as can be seen on Fig. 9a this is not the case. Instead agent quickly learns the wrong policy and 
is unable to recover from it. This could have happened because of the change in state representation of 
the agent. Since each entity surrounding the agent is one-hot encoded the change of entity type (to empty 
tile) might have had a drastic effect on the agent policy. Curiously enough on Fig. 9b the agent is able to 
learn the policy, but the reward gain is much less steep, which suggests that agent is struggling to learn 
an optimal policy. 

3.8 Results 

The results are presented in Table 2 with all combinations of hyperparameters used in experiments 
alongside final average reward from previous experiments. Numbers in bold are the best for the given 
subset in an experiment. Judging by the table, the best approximate average reward is achieved when 
memory sample size and memory capacity were in the middle – both not too high and too low. This shows 
that an optimal value for these parameters can be found empirically. 

Experiment 
No. 

Vision 
range 

Discount 
factor 

Memory 
size 

Memory 
sample size 

Final approx. 
average 
reward 

1a 

2 

0.99 

1024 

32 0.75 
1b 64 7.00 
1c 128 6.50 
2a 0.50 

64 

5.00 
2b 0.25 0.50 
2c 0.10 -1.00 
3a 

 

128 2.50 
3b 256 3.00 
3c 512 6.00 
3d 1024 7.00 
3e 2048 1.00 
3f 4096 2.50 
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4a 1 

1024 

-1.00 
4b 3 6.00 
5a 2 -1.00 
5b 3.00 

Table 2: Configurations of experiment parameters and final rewards for each set 

4 Discussion 
Conducted experiments in this paper have shown that configuration of parameters specific to 
reinforcement learning algorithms affect their performance significantly. In experiment 2 (Fig. 4) it was 
shown that decreasing the value of discount factor makes learning process significantly worse and adds 
visible noise to the reward graph, which suggests agent acts are more random and its inability to learn a 
stable policy. 

Another notable effect on performance was observed with the change of memory sample size (experiment 
shown on Fig. 3). Decreasing memory sample size effectively makes machine learning algorithm training 
dataset very sparse and in turn learning highly biased which affects optimal policy search. On the other 
hand, increasing memory sample size significantly increases computational cost, because this batch of 
training data has to be applied on each training step of the agent, hence just choosing a high value for the 
batch size is not practical and therefore development of methods in this direction is relevant. 

Experiment 3 changes memory capacity instead of sample size, which gives an effect of long-term or short-
term for the agent. As can be seen in Table 2, either decreasing or increasing memory capacity does not 
necessarily makes agent learn better. Counter-intuitively, increasing the capacity of memory makes 
learning process worse than when capacity is decreased, which suggests that the agent learns better with 
shorter-term memory. This fact might find reflection in the maximum number of steps that agent is 
allowed to make during the episode until environment resets. 

Changes of agent vision range in experiment 4 (Fig. 6) shown that state representation must be large 
enough to be able to represent current state absolutely which means it should either take into account 
previous experiences (like number of steps) or a higher dimensionality of state representation. Fig. 7 
shows that with a small vision range, agent is unable to differentiate between two separate states which 
are different relative to the environment (absolute), however relative to the agent they are the same. 

The last experiment involved environment augmentation in a form of adding a crumb with gave the agent 
additional reward on the path to the goal. Interestingly enough this did not improve learning performance 
of the agent while on the opposite made it impossible for it to learn a policy (Fig. 9a). Even though 
reaching the goal would give the agent much bigger reward, agent instead focusing on the crumb. This 
shows that adding intermediate rewards manually not always can benefit the learning process, therefore 
other methods against sparse rewards should be used. 

5 Summary and Outlook 
Experiments conducted in this work have shown that there is an empirical way to tune machine learning 
parameters specific to reinforcement learning mainly focusing on memory. Topic of state representation 
and environment augmentation were touched and showed that there always must be enough of fidelity 
in state representation for the agent to distinguish current state. Environment augmentation took place 
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in the form of placing a crumb on the path to the goal in hope to reinforce the agent to follow the path, 
however experiments have shown that in practice this is not the case. Instead manually created artificial 
intermediate reward interfered with agent exploration of the environment and in one case did not allow 
agent to fully explore the it. 

Based on the experiments memory sample size affects learning process significantly and therefore it is 
crucial to have an ability to choose the value of sample size using systematic approach. Hence, one of 
further directions of research could be the development of an adaptive memory sample size algorithm 
similar to the one existing for neural network learning rate (Adagrad [Duc11]). Such algorithm could take 
into account average step count during each episode or some other metric. Another approach to memory 
adaptation might involve experience weighting based on correlation with given situation, giving context 
to certain memories in certain situations. 

The idea of adaptive memory has been touched upon in the works such as [Rui18], however presently 
there are no widely adopted methods for this, therefore further research is needed. 
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