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OUTLINE

o Introducton
o Concepts and methods
o What is reinforcement learning?
o Current advancements (state-of-the-art)
o Problem area
o Methodology
o Implementation
o Experiments and results

o Summary & outlook
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INTRODUCTION

Applying machine learning algorithms from scratch is not
straight-forward. Neural networks have many hyperparameters:

o Learning rate (fixed by Adagrad)
o Types of layers
o Number of layers
o Each layer has their own parameters:
o Fully connected: number of neurons and initial values

o Convolutional: kernel size, strides, etc.
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INTRODUCTION

Deep reinforcement learning builds on top of neural networks
More paramaters!

o Agent learning rate (different from neural network)

o Discount factor

o Reward function

o Replay memory capacity

o Memory sample size
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INTRODUCTION

The aim of this work is to try and find systematic approach to
parameter tuning using DQN in discrete state- and action-spaces

Custom grid-world environment is presented with state space in
the form of vision around the agent instead of absolute position

Developed solution allows to run multiple passes of the same
agent configuration to get better statistical stability of the results
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WHAT IS REINFORCEMENT LEARNING?

"Reinforcement learning problems involve learning what to do in context of how to
map situations to actions so as to maximize a numerical reward signal” [Sut18]
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Typical agent-environment interaction in
reinforcement learning [Suti8]
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Source: Microsoft Research
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CONTINUOUS ACTION SPACE (ACTOR—-CRITIC)

Source: NVIDIA Source: Microsoft Research
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CURRENT ADVANCEMENTS

A number of modifications have been proposed:
o Multi-agent learning [Doy02], [Foel6]

o Reward shaping

o Policy search [Yng03]

o Learning without exploration [Fuj19]

o Self-supervision [Eval7]
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CURRENT PROBLEMS

Lack of research in how memory capacity and sample size affect
learning performance, along with other hyperparameters

No systematic approach — modern algorithms “just work”, but
before that they require manual configuration

Recently there were attempts to stand back and understand why
simple algorithms work [Jin19]
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METHODOLOGY

Several experiments are conducted and the averages of loss and
reward over five runs are presented

The grid world is used instead of computer vision task to reduce
complexity

Algorithm performance evaluation allows to build a systematic
approach to agent hyperparameter choice at least a given
environment
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EXPERIMENTS

Focus on different parameters:

1.

2
3.
4
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Memory sample size
Discount factor
Memory capacity

Agent vision range
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Training loss (100 steps moving average) Reward (100 steps moving average)
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EXPERIMENT 2
(DISCOUNT RATE)

Optimal memory sample size is used
as a baseline

Smaller discount rate — harder to
remember what is “good”

More noise in agend actions, however
faster convergence of loss

15
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Training loss (100 steps moving average) Reward (100 steps moving average)
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¢) Memory capacity: 512
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RIMENT 3 (MEMORY CAPACITY)
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EXPERIMENT 3 (MEMORY CAPACITY)

More memory capacity — longer history is remembered, however agent
might not notice any improvements that it has learned
Learning performance is not in a linear relation to memory capacity!

Run No. Memory size Loss ﬁr.st convergence | Average reward.at Final approx.
(in steps) convergence point average reward
3a 128 300 -2.50 2.50
3b 256 500 -2.00 3.00
3C 512 1500 -2.00 6.00
3d 1024 2500 0.00 7.00
3e 2048 1500 -1.00 1.00
3f 4096 2000 -1.25 2.50

Table 1: Number of steps until model error first convergence and respective
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average reward
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EXPERIMENT 4 (VISION RANGE)

Agent is unable to differentiate between different
states in the environment
Relatively to the agent those states are identical
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RESULTS

Experiment Vision Discount Memory Memory Final approx.

No. range factor size sample size C;‘e/i/rgf;
1a %) 0.75

1b 0.99 64 7.00

= 1024 128 650
2d 0.50 5.00

2b 0-25 0.50

2C 0.10 -1.00

2

34 128 2.50

3b 256 3.00

BiS 512 64 6.00

3d 1024 7.00

BiS 20438 1.00

3t 4096 2.50

44 ! -1.00

4b 3 o 6.00
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SUMMARY

o Experiments have shown that it is possible to find optimal
parameter values by hand by picking an arbitrary value first

o Memory capacity and sample size change had the most
significant effect and non-linear relation

o Application of training set processing from supervised learning
(even distribution to avoid bias — balancing training data set)
might improve learning performance
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OUTLOOK

o This opens a new direction in developing new adaptive
methods (similar to Adagrad [Duc11]) for memory parameters
adaptation

o Will probably require building new data structure (currently
deque-like structures are used)

o Could general adaptation framework be the way to general
artificial intelligence?
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