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Аннотация. В статье предлагается алгоритм поиска целочисленного решения, использующий идею округления 

координат точки оптимального нецелочисленного решения и построения луча, направленного вглубь области до-

пустимого решения. Алгоритм основан на итеративном процессе округления координат точки в направлении по-

строенного луча. В ходе исследования обнаружено, что движение в сторону направления луча без перебора всех 

возможных вариантов упрощает алгоритм и позволяет избежать ветвления. Это выделяет данный подход из других 

существующих на данный момент открытых методов, таких как методы отсечений и ветвей и границ. В процессе 

работы осуществлялись описание и экспериментальная проверка данного алгоритма и возможности его примене-

ния при разных конфигурациях области допустимых решений. Теоретическая значимость исследования заключа-

ется в разработке нового алгоритма, который не требует выполнения симплекс-метода на каждом этапе и на каж-

дом шаге использует луч вместо плоскости, что предотвращает рост пространственной сложности задачи по срав-

нению с другими методами. В ходе исследования стало видно, что предложенный алгоритм имеет ограничения, 

однако основная идея доказала свою работоспособность, и в дальнейшем планируется развивать ее. 

Ключевые слова: математическое программирование, линейное программирование, целочисленное программи-

рование, оптимизация, алгоритм, покоординатный спуск 
 

Введение. Задачи целочисленного програм-
мирования (ЦП) широко применяются в раз-

личных отраслях, таких как производство, ло-

гистика, экономика, информационные техно-

логии и многих других [1–3]. Их актуальность 

обусловлена необходимостью оптимизации 

различных процессов и распределения ресур-

сов. Являясь частным случаем линейного про-
граммирования (ЛП) [4], ЦП имеет достаточно 

долгую историю [5, 6].  

В данной работе развивается идея из [7], где 

предложен алгоритм для поиска целочислен-

ного решения по аналогии с методом покоор-

динатного спуска [8]. Представленный алго-

ритм, помимо итеративного округления коор-

динат на каждом шаге, проверяет выход за 

область допустимых решений (ОДР) и при 

необходимости возвращает текущее решение 

на ее границу. 

 

Современное состояние  

предметной области 

 

Одной из основных проблем при решении 

задач ЦП до сих пор является их высокая вы-

числительная сложность. Это обусловлено в 

основном тем, что точные методы решения 

данного рода задач, такие как метод отсечений 

и метод ветвей и границ [9] (также известный 

как метод Гомори [10]), тратят много вычисли- 

тельных ресурсов впустую из-за своей при-

роды: решают множество конфигураций одной 

и той же задачи (тем самым разветвляясь), что 

экспоненциально увеличивает время выполне-

ния. Кроме того, они полагаются на достаточно 

затратную операцию нахождения оптимального 

решения с помощью симплекс-метода [11] на 

каждом шаге выполнения алгоритма, что при-

водит к значительным временным затратам. 

Для исследования дискретных задач ЦП с ло-

гическими переменными имеется метод L-раз- 

биений [12], который позволяет решать комби-

наторные задачи, но не получать численные  

решения. С другой стороны, существуют эври-

стические алгоритмы, такие как поиск с вос-

хождением к вершине [13] и алгоритм имита-

ции отжига [14], являющийся примером метода 

Монте-Карло, а также другие подходы с приме-

нением алгоритмов машинного обучения [15]. 

Данные методы часто используются для реше-

ния задач ЦП из-за их более высокой скорости 

выполнения по сравнению с точными алгорит-

мами. Поскольку данные алгоритмы эвристи-

ческие, в них изначально заложен элемент слу-

чайности, поэтому, используя их, приходится 

делать некоторые допущения в плане точности. 

В одной из недавних работ [16] представлен 

подход к решению задач математического про-

граммирования с помощью R-функциональ-

ного моделирования на основе построения вок- 
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сельных моделей геометрических объектов. 

Данный подход также увеличивает размер-

ность пространства и в большей степени наце-

лен на задачи нелинейного программирования. 

В настоящий момент нет точных сведений  

о его работе с задачами ЦП. 

Таким образом, можно сделать вывод о том, 

что существующие на данный момент методы 

решения задач ЦП имеют свои недостатки, 

обусловленные прежде всего выполнением до-

статочно большого количества излишних опе-

раций из-за увеличения размерности простран-

ства решения или ограничения применения. 

Отличительной особенностью предлагаемого 

алгоритма является то, что он позволяет вы-

полнить задачу без увеличения размерности 

пространства решения за счет избегания ввода 

новых ограничений, что потенциально может 

ускорить поиск. 
 

Алгоритм поиска решения с помощью  

итеративного округления координат 
 

В данной статье описывается точный алго-

ритм для поиска решения задачи ЦП, рассмот-

рены и экспериментально проверены не-

сколько подходов. Основная идея каждого из 

них – смещение вглубь ОДР. Это достигается 

за счет построения луча, смотрящего внутрь 

ОДР в сторону уменьшения значения целевой 

функции (при задаче максимизации) и опреде-

ляющего направление движения при смещении 

вглубь ОДР. Проверим некоторые предполо-

жения, а именно:  

– определив новый базис в точке оптималь-

ного решения O, можно построить луч, который 

смотрел бы внутрь ОДР; данный луч можно ис-

пользовать при смещении вглубь ОДР во время 

поиска целочисленного решения; 

– поочередно округляя каждую из коорди-

нат точки нецелочисленного оптимального ре-

шения O до ближайшего целого числа, можно 

найти целочисленное решение внутри ОДР. 

Во всех случаях строится луч, выходящий 

из оптимальной точки O, считающейся 

начальной в данном алгоритме. После этого 

на построенном луче находится точка P, одна 

из координат которой является целочислен-

ной. Из этой точки начинается итеративный 

процесс поиска целочисленного решения. Ал-

горитм состоит из нескольких шагов. 
 

Определение ближайшего базиса 
 

Для построения луча необходимо опреде-

лить ближайшие смежные ограничения на точ- 

ку O. Для этого необходимо решить уравнение 

ограничений вида 

0,Ax b =−           (1) 

определенное матрицей A и вектором b  в соот-

ветствии с уравнением, где координатами x  

являются координаты точки O. Выполняющи-

еся уравнения и будут определять ограниче-

ния, которые образуют новый базис. 

Допустим, даны следующие ограничения: 

1 2

1 2

1

2

6 15,

5 11,

0,

0.

x + x

x x

x

x

− 


− 



 

 

Тогда можно определить матрицу A и век-

тор b : 

1 6 15

5 1 11
,    .

1 0 0

0 1 0

A b

− −   
   

− −   = =
   
   
   

 

После этого, подставив точку оптимально- 

го нецелочисленного решения 
81 86

,
29 29

O
 

=  
 

 

в уравнение (1), получим 

1 6 15
81

5 1 1129
 

1 0 86 0
29

0 1 0

1 6 15

5 1 1181 86

1 0 029 29

0 1 0

15
15

11
11

81
029

86 0
29

0

0

81
29

86
29

AO b

− −   
    

− −    − = − =
    
    

   

− −     
     

− −     = + − =
     
     
     

− 
−  

−    − = − = 
  
     

 





=



.





 
 
  

  

Видно, что элементы с номерами k = 1, 2 яв-

ляются наименьшими (равны 0), а значит, соот- 

ветствующие ограничения образуют новый ба-

зис в точке O (рис. 1): 
 

1 2 1

1 2 2

6 15 0,

5 11 0.

x + x s

x x s

−  = 
= 

−  = 
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Новый базис s1s2 будет представлять собой 

прямоугольную систему координат с осями s1 

и s2 соответственно. 

Определим прямую функцию перехода от 

исходного базиса к новому: 

( ) kL x = M x b−         (2) 

и соответствующую ей обратную функцию пе-

рехода из нового базиса к исходному: 
1 1( ) ( ),kL x M x b− −= +  

где x  – преобразуемая точка в исходном ба-

зисе; kb  – вектор k-х свободных членов; M – 

квадратная матрица перехода к новому базису 

со строками k из матрицы A: 

1 6 1

5 1 2 1 6
     ,

1 0 5 1

0 1

k

k
A M

−  = 
 

−  = −  = → =    − 
 
 

 

15 1

11 2 15
        .

0 11

0

k

k =

k =
b b

−  
 

−  −  = → =    − 
 
 

 

 

Построение луча 

 

Наивный метод. В новом базисе M по-

строим вектор (1,1, ..., )v = n  длиной n, где n – 

число столбцов матрицы M (равное числу из-

мерений). Данный вектор будет определять луч 

в новом базисе и делить область между ограни-

чениями пополам (рис. 2а). Зная матрицу M и 

вектор v , можно перенести данный луч в исход-

ный базис (рис. 2б), используя уравнение (2). 

Назовем такой метод построения луча наив-

ным, поскольку простой перенос луча в исход- 

ный базис не позволяет получить луч, который 

делил бы ОДР ровно пополам. 

Разделение области между ограничени-

ями ровно пополам. Поскольку наивный метод 

построения луча не позволяет получить такой 

 
 

Рис. 1. Смежные ограничения, ближайшие  

к точке O в исходном базисе x1x2 
 

Fig. 1. Intersecting constraints closest  

to the point O in primal basis x1x2 

  

а) б) 

Рис. 2. Луч в новом (а) и исходном (б) базисах 
 

Fig. 2. Ray in new basis (а) and primal basis (б) 
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луч, который делил бы область между базис-

ными ограничениями ровно пополам, необхо-

димо модифицировать метод, с помощью кото-

рого строится луч. Это становится особенно за-

метным, если изменить ОДР, сделав ее более 

узкой. 

Дело в том, что масштаб координатной 

сетки в новом базисе не равен масштабу в ста-

ром. Из-за этого, например, вектор (1,1) в ис-

ходном базисе будет перекошен в новом базисе 

и наоборот. Для избежания этого нужно по-

строить вектор 𝑣‾ таким образом, чтобы его ко-
ординатами был шаг сетки по каждой из базис-

ных осей (в данном случае – s1 и s2). 

Шаг сетки базисной оси – это длина нор-

мального вектора ограничения, образующего 

базис. Допустим, даны ограничения: 

1 2 1

1 2 2

8 6 1 0,

4 2 3 0.

x x s

x + x s

−  = 
= 

−  = 
 

Тогда их нормальные векторы равны: 

1

2

(8, 6),

( 4,2),

s

s

n

n

= −

= −
 

длины этих векторов соответственно: 

1

2

10,

2 5,

s

s

n

n

=

=
 

а вектор, задающий луч в новом базисе, можно 

определить следующим образом: 

1

2

ˆ .
s

s

n
v =

n

 
 
  
 

 

Для удобства представления вектор v̂  

можно нормализовать: 

ˆ .
v

v =
v

 

 

Определение точки P на луче 
 

Для нахождения точки, из которой будет 

начинаться поиск, необходимо округлить коор-

динаты точки 
81 86

29 29
O = ,

 
 
 

 вниз (в задаче мак-

симизации): ' (2,2)O = O =   . 

После этого через полученную точку нужно 

провести секущие плоскости x1 = 2, x2 = 2, парал- 

лельные осям координат, и найти точки пересе- 

чения Pi между плоскостями и лучом (рис. 3).  

Таким образом, получается набор потенциаль-

ных начальных точек внутри ОДР, в каждой из 

которых одна из координат является целочис-

ленной. Затем необходимо выбрать наилуч- 

шую точку, рассчитав значения целевой функ-

ции f(x) для каждой точки Pi. 

Допустим, задана целевая функция ( )f x =

1 23 2= x + x , тогда можно найти ее значения: 

1

2

16 74
( ) 3 2 2 10.57,

7 7

5
( ) 3 2 2 9.

3

f P = + =

f P = + =

  

 

. 

Значение целевой функции для P1 наиболь-

шее, значит, точка P = P1 будет начальной. 

 
Выбор оси координат для округления 

 

После нахождения новой начальной точки 

16
2,  

17
P =

 
 
 

 необходимо определить ось, вдоль 

которой будет происходить смещение. По-

скольку у точки P одна из координат уже явля-

ется целочисленной, выбирается ось коорди-

нат, по которой из других осей следует дви-

гаться далее. Так как в данном случае всего две 

оси (x1 и x2) и известно, что координата x1 точки 

P уже целочисленная, выбора не остается и 

смещение будет происходить вдоль оси x2. 

 

Смещение точки P вдоль выбранной  

оси координат 
 

На первом этапе координата x1 точки P це-

лочисленная, следовательно, нужно округлять 

 
 

Рис. 3. Исправленный луч, секущие плоскости  

в точке O' и потенциальные начальные  

точки Pi на луче 
 

Fig. 3. Fixed ray, intersecting planes at point O' 

and potential starting points Pi on the ray 
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по следующей доступной координате – x2. Обо-

значим точку с округленной координатой как 

P. Перенесем точку P в новый базис и обо-

значим как L(P). Одна из ее координат (s2) от-

рицательная. Это означает, что точка вышла за 

границы ОДР. Чтобы найти точку на границе 

ОДР, можно провести прямую между точками 

P и L(P) и найти ее пересечение с осью s1. По- 

лученную точку обозначим 
 '

P    (рис. 4) и пе-

ренесем обратно в исходный базис, обозначив 

как 
 '1( )L P−

    – это будет следующей точкой 

для поиска решения. 

Аналогично округлим начальную точку P 

вниз. Все ее координаты становятся целочис- 

ленными и положительными в новом базисе 

(рис. 5), следовательно, целочисленное реше-

ние для данного примера найдено. 

После выполнения данных шагов коорди-

наты точки P проверяются на целочисленность. 

Если хотя бы одна из координат не является це-

лочисленной, все шаги повторяются для новой 

точки P. Целочисленное решение будет най- 

дено, когда все координаты точки P станут це-

лочисленными. На рисунке 6 представлена об-

щая блок-схема описанного алгоритма. 

Непосредственно сама процедура одного 

смещения точки получает на вход точку P, ин-

декс оси i, вдоль которой происходит смеще-

ние, а также направление округления – вверх 

или вниз. Процедура должна сделать копию 

точки P в памяти, которую обозначим Q, по-

скольку в дальнейшем понадобятся изменен-

ная точка Q и изначальная точка P. На первом 

шаге проверяется, является ли i-я координата 

точки Q целым числом. В случае целого числа 

  

Рис. 4. Округление координаты x2 точки P вверх и определение ее выхода за ОДР 
 

Fig. 4. Rounding up coordinate x2 of point P and checking if point P left the feasible region 
 

 

  
 

Рис. 5. Округление координаты x2 точки P вниз и определение ее выхода за ОДР 
 

Fig. 5. Rounding down coordinate x2 of point P and checking if point P left the feasible region 
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производится ее смещение на единицу в поло-

жительную сторону вдоль оси i в случае округ-

ления вверх или же в отрицательную в случае 

округления вниз. Если i-я координата точки Q 

не является целым числом, ее значение округ-

ляется либо вверх, либо вниз до ближайшего 

целого. После этого точки P и Q переносятся в 

новый базис, найденный в начале итерации  

(на первом шаге алгоритма). Обозначим новые 

точки как PT = L(P) и QT = L(Q). 

Затем проверяются значения координат 

точки QT на неотрицательность. Отрицатель-

ное значение указывает на выход за ОДР.  

В таком случае осуществляется поиск точки 

пересечения между прямой PTQT и i-й осью ко-

ординат в новом базисе. Обозначим данную 

точку как R и перенесем ее в исходный базис: 

Q = L-1(R). В результате получим точку Q, ко-
торая будет либо смещена на единицу вдоль 

оси i, либо находиться на границе ОДР на дан-

ной оси. 

Представим процедуру выполнения одного 

шага алгоритма на языке программирования 

Julia: 
 

function make_step(axis, point, round-

ing_mode = RoundUp) 

search_point = copy(point) 

rounding_up = rounding_mode == RoundUp 

 

if abs(search_point[axis] -  

- round(search_point[axis])) <= 10^-10 

search_point[axis] =  

= search_point[axis] +  

+(rounding_up ? 1 : -1) 

else 

search_point[axis] = 

round(search_point[axis], round-

ing_mode) 

end 

 

transformed_point = L(point) 

transformed_search_point =  

= L(search_point) 

 

if minimum(transformed_search_point) <  

< 0 

got_out_of_bounds = true 

 

plane_axis = argmin(trans-

formed_search_point) 

plane_normal = zeros(length(ba-

sis_indices)) 

plane_normal[plane_axis] = 1.0 

 

search_point_intersection =  

=intersect_line_with_plane( 

transformed_search_point -  

transformed_point, 

transformed_point, 

plane_normal, 

[0.0, 0.0], 

) 

 

search_point = 

Linv(search_point_intersection) 

else 

got_out_of_bounds = false 

end 

 

return (search_point, 

got_out_of_bounds) 

end 
 

Блок-схема данной процедуры изображена 

на рисунке 7. 

Оптимальное нецелочисленное

решение задачи ЛП – точка O

Определение ближайшего базиса

Построение луча

Определение точки P на луче

Выбор оси координат для округления

Смещение точки P

вдоль выбранной оси координат

Перенос точки P в новый базис

Перенос точки P в исходный базис

Смещение точки P на границу ОДР

Целочисленное решение найдено

Все координаты точки P 

целочисленные?

Выход за ОДР?

Да

Да

Нет

Нет

 
 

Рис. 6. Общая блок-схема алгоритма 
 

Fig. 6. Flow chart of the algorithm 
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Наблюдение 1. Округление  

в сторону направления луча 
 

Изменим ОДР, сместив и повернув второе 

ограничение, и аналогичным образом построим 

луч, направленный вглубь ОДР. Точка O' необя-

зательно должна находиться внутри ОДР, по-

скольку через нее проводятся прямые, парал- 

лельные осям координат и пересекающиеся с 

лучом, направленным вглубь ОДР. Благодаря 

этому точка будут находиться внутри ОДР. 

Когда луч направлен вниз и влево, округле-

ния вверх или вправо, как правило, не дают ре-

зультата (за исключением, когда базисное 

ограничение параллельно оси координат). 

Таким образом, если луч направлен влево, 

то есть первая координата вектора v  отрица- 

Создание копии 

точки P в памяти

Точка P

Индекс оси i, вдоль которой 

происходит смещение

Направление округления

(вверх или вниз)

Q = P

Координата точки Q 

на оси i – целое число?

Округление вверх?

Сместить точку Q

вдоль оси i на +1

Сместить точку Q

вдоль оси i на -1

Да

Да Нет

PT = L(P)

QT = L(Q)

Округление вверх?

Округлить координату 

точки Q на оси i вверх

Округлить координату 

точки Q на оси i вниз

Нет

Да Нет

Перенос точек P

и Q в новый базис

Хотя бы одна из координат точки QT < 0?

Выход за ОДР = истина Выход за ОДР = ложь

Да Нет

Поиск точки пересечения R прямой, заданной 

точками PT, QT, с осью i в новом базисе

Q = L-1(R)

Вывод точки Q 
и признака выхода за 

ОДР  
 

Рис. 7. Блок-схема алгоритма выполнения одного смещения точки 
 

Fig. 7. Flow chart of the algorithm for a single step of the point 
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тельная, точку следует округлять вниз по оси 

x1; если же первая координата вектора v  поло-

жительная, соответствующую координату 

точки необходимо округлять вверх. 

Аналогично для оси x2 стоит руководство-

ваться знаком второй координаты вектора v , 

определяющей луч. Так, если луч направлен 

вниз, то значение координаты x2 у него отрица-

тельное, следовательно, округлять координату 

точки необходимо также вниз. Если луч 

направлен вверх, то значение координаты x2 у 

его вектора положительное и округлять коор-

динату точки необходимо вверх. Далее пред-

ставлен процесс выполнения алгоритма поиска 

решения (рис. 8). 

Исследование алгоритма  

при узкой ОДР 
 

Изменим задачу так, чтобы ОДР была более 

узкой, а следовательно, целочисленное реше-

ние находилось бы дальше от оптимальной 

точки O. Из-за этого нужно будет выполнить 

больше шагов алгоритма, поэтапно округляя 

точку сначала по одной оси координат, а затем 

по другой. Используя уже представленный ал-

горитм, будем выполнять его итеративно до 

того момента, пока у точки P все координаты 

не окажутся целочисленными в исходном ба-

зисе. На рисунке 9 видно, что точка P как бы 

отскакивает от ограничений при выходе за пре-

делы ОДР. 

 
 

 

Рис. 8. Перемещение точки в процессе поиска решения 
 

Fig. 8. Point movement during the search of a solution 

 
 

 

Рис. 9. Перемещение точки в процессе поиска решения для узкой ОДР 
 

Fig. 9. Point movement during the search of a solution in the narrow feasible region 
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Исследование алгоритма  

при добавлении третьего ограничения 

 

Введем третье ограничение, которое изме-

няло бы форму ОДР так, чтобы в ходе выпол-

нения алгоритма точка, находящаяся внутри 

базиса между двумя ограничениями (s1 и s2), 

смогла выйти за пределы ОДР. В таком случае 

проверка на выход из ОДР и возврат точки об-

ратно невозможны, и это приведет к тому, что 

алгоритм может не сойтись, хотя в текущем 

случае он находит решение (рис. 10). 

 

Наблюдение 2. Определение  

последовательности округления координат 

 

Используя вектор, задающий направление 

луча, можно определить последовательность 

осей координат, по которым стоит производить 

округление на следующих шагах. Дополняя 

наблюдение 1, определим веса w  каждой из 

осей как соответствующие координаты норма-

лизованного вектора ˆ,r  определяющего луч в 

исходном базисе: 
1

1

ˆ( )
ˆ ,

ˆ( )

L v
r

L v

−

−
=  

1

2

ˆ 0.198 0.198
.

0.980ˆ 0.980

r
w

r

   −   
=          −     

 

Учитывая вектор ,w  сначала нужно округ-

лять по второй координате, а затем по первой, 

так как значение 2̂r  больше 1̂r . Аналогично 

можно определить направление округления, 

если использовать значения координат вектора 

r̂  не по модулю, а по знаку: 

1

2

ˆ 0.198
.

ˆ 0.980

r
d

r

−   
=    

−   
 

Таким образом, вектор d  указывает, что по 

оси x1 (первый элемент вектора) округлять 

нужно вниз (то есть влево на графике), как и по 

оси x2 (второй элемент вектора) (то есть вниз на 

графике). Например, если бы вектор r̂  содер-

жал значения с разными знаками, округлять 

стоило бы в направлении знака по соответству-

ющим осям координат, поскольку именно в ту 

сторону направлен луч: 

1

2

3

ˆ    0.37

ˆ 0.65 .

ˆ    0.76

r

d r

r

   
   

=  −    
  

  

 

В таком случае округлять по осям x1 и x3 

необходимо было бы вверх, а по оси x2 – вниз. 

 
Исследование алгоритма при изменении 

направления луча 

 

Изменим ОДР, повернув ограничение s2 так, 

чтобы луч смотрел не влево, а вправо. Тем са-

мым продемонстрируем несостоятельность те-

кущего способа построения луча, поскольку в 

таком случае алгоритм никогда не сойдется и 

целочисленное решение, лежащее внутри ОДР, 

не будет найдено (рис. 11). 

 

Заключение 
 

В статье был рассмотрен алгоритм поиска 

целочисленного решения, основанный на по-

строении луча, смотрящего вглубь ОДР, и  

итеративном процессе округления координат 

 
 

Рис. 10. Выход точки P за пределы ОДР  

при положительных координатах в базисе s1s2  
 

Fig. 10. Point P leaves the feasible region while 

all of its coordinates in basis s1s2 are positive 
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точки в направлении данного луча. Проведен-

ные эксперименты показали работоспособ-

ность данного подхода, однако не всегда воз-

можно построить луч, который смотрел бы 

вглубь ОДР. Кроме того, предложенный алго-

ритм может работать некорректно при введе-

нии дополнительных ограничений. Таким об-

разом, в настоящий момент алгоритм подходит 

только для задач с двумя ограничениями. 

Дальнейшие исследования могут быть 

направлены на модификацию алгоритма, 

чтобы он мог работать при большем числе 

ограничений. Также необходимо изменить спо-

соб построения луча. Например, его можно 

строить не среди ограничений, а между точ-

ками оптимального решения и начального ба-

зиса, что должно исключить возможность вы-

хода точки за пределы ОДР. 
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Abstract. The article proposes an algorithm for finding an integer solution using the idea of rounding coordinates of an 

optimal non-integer solution point and constructing a half-line directed deep into an acceptable solution area. The proposed 

algorithm is based on an iterative process of rounding coordinates of a point in the direction of a constructed half-line. The 

study educed that moving towards a half-line without going through all possible options simplifies the algorithm and avoids 

branching, which distinguishes this approach compared to other currently existing open methods, such as the method of 

clipping and the method of branches and boundaries. The aim of the work is to develop and study an algorithm for finding 

an optimal integer solution using the idea of rounding coordinates of a point of an optimal non-integer solution. During the 

study, the authors carried out description and experimental verification of this algorithm and the possibility of its application 

in different forms of an acceptable solution domain. The theoretical significance of the work is a development of a new 

algorithm that does not require performing a simplex-method at each stage, and uses a half-line instead of a plane at each 

algorithm step, which prevents an increase in problem spatial complexity compared to other methods. The study showed 

that the proposed algorithm has limitations; however, the main idea proved its operability, which is planned to be developed 

further. 
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