
Aleksei Ivanov: Scientific project, SoSe 2020
Hochschule Osnabrück 1

Grafana Dashboard for Phenological Data Monitoring

1 Introduction

This project aims to provide a software architecture of a web-based application that
collects phenological data across Germany using open data from Deutscher Wetterdienst
(DWD). Phenological data is of great interest to researchers in the field of ecological
monitoring, specifically because it can serve as a monitor for climate change [Sch14] is
has become more important in recent years.

The developed solution can help visualize phenological data more intuitively using a map
of the country, helping researchers judge the current status of plants all around the country
at a glance. In the future, this dashboard can be combined with another data-source to
conduct more objective-specific research, i.e. the correlation of beehive data with
phenological data in a given location.

The project consists mainly of two parts:

• Back-end, which consists of an application written in Python that collects data
from DWD daily. After that it stores new data in the database;

• Front-end is done by leveraging the Grafana open-source dashboard solution.

2 Current developments and state-of-the-art

This chapter gives a brief review of previous attempts at building systems that are similar
in spirit. After that follows a brief review of the state-of-the-art technologies which are
currently available and can aid in building this type of project.

2.1 Current developments

With the advancements and affordability of IoT sensor devices, there has been an
emergence of sensor data aggregation and processing projects. One of such projects is
luftdaten.de (Sensor Community)1, which collects widely available data such as air
temperature, humidity, etc. from the volunteers in numerous countries. They do not have
a dashboard; however, they provide a map to visualize recently collected data (no history
retention).

Another ambitious project in the area of ecological data aggregation applied specifically
to beehives is called Hiveeyes2, which focuses on “developing a flexible beehive

1 Sensor Community. URL: https://sensor.community
2 The Hiveeyes Project. URL: https://hiveeyes.org

2 Aleksei Ivanov

monitoring infrastructure platform” by providing an open-source toolkit for non-invasive
beekeeping. This allows beekeepers to get a head start in building data-gathering
infrastructure and visualization complex. It uses the Grafana dashboard as the main way
to build visualizations.

Fig. 1: Example Hiveeyes dashboard

Deutscher Wetterdienst (DWD) is a German meteorological service that provides weather
data and forecasting around Germany. Alongside weather services it also provides other
types of data for nautical, aviation, and agricultural purposes. In particular, it provides
such data as min, max and mean temperature, historical precipitation, atmospheric
pressure, cloud coverage, wind force, etc.

DWD provides its data through the Climate Data Center (CDC)3 that consists of a portal,
which allows the user to get interactive access to data set visualizations (Fig. 2).

Fig. 2: CDC-portal data set visualization using an interactive map interface

3 Deutscher Wetterdienst Climate Data Center. URL:

https://www.dwd.de/EN/climate_environment/cdc/cdc_node.html

Grafana Dashboard for Phenological Data Monitoring 3

Another way to access DWD data is through the CDC OpenData4 repository that provides
access to the larger variety of data that is accessible through either HTTPS or FTP. Among
the different kinds of data sets provided one of the most interesting for this project is the
phenological data set, which is accessible from the repository.

Fig. 3: CDC OpenData phenological data repository for fruit plants

Data is stored as plain text CSV files, updated daily, and categorized by plant type (crops,
fruit, and wild plants). This method is much more versatile since it gives access to more
types of data for researchers at a cost of extra work processing data.

Since DWD maintains the biggest network of stations all around Germany and provides
open phenological data with frequent updates, it makes sense to use it as a data source for
this project.

2.2 State-of-the-art

The next part of this chapter gives a brief review of the state-of-the-art open-source tools
and solutions for data processing and visualization.

Since this project aims to build a dashboard graphical user interface for phenological data
visualization it makes sense to use already existing tools that provide such functionality.

Grafana5 is an open-source web application for analytics and interactive data visualization
using charts, graphs, tables, and even maps – which are particularly useful for this project.
Grafana allows to connect various types of data sources, such as time-series databases,
logging, and even SQL relational databases such as MySQL and PostgreSQL.

4 CDC OpenData. URL: https://opendata.dwd.de/climate_environment/CDC
5 Grafana: The open observability platform | Grafana Labs. URL: https://grafana.com

4 Aleksei Ivanov

By adding panels, it allows users to build their own dashboard, where each panel displays
a particular query to the specified data source.

Fig. 4: Grafana open-source dashboard

An alternative to Grafana could serve InfluxDB – which originally was built as a time-
series database, but now also features a dashboard-building web application called
Chronograf. However, it is aimed more towards data exploration and tight integration with
InfluxDB, which makes it less than ideal choice for this project, since the database that is
going to be used in this project (MySQL) is not supported along with missing geographic
map visualization.

As have been previously mentioned this project will use MySQL relational database for
storage of normalized phenological data, gathered from the DWD CDC OpenData
repository. This will allow for fast access to data since it is possible to leverage indexing.
MySQL was chosen since it is one of the most popular and supported open-source
databases and Grafana already comes with data source integration for this database.

To prepare data for insert into a relational database first it must be downloaded from the
DWD repository and then processed. One of the commonly used solutions for data
processing is the Python6 programming language using pandas7 library, which makes it
easy to work with table data.

6 Python programming language. URL: https://www.python.org
7 pandas - Python Data Analysis Library. URL: https://pandas.pydata.org

Grafana Dashboard for Phenological Data Monitoring 5

3 Application architecture

The application consists of two main parts: front-end and back-end. Front-end will be
implemented using the Grafana web application, setting up a data source, and configuring
the dashboard by adding panels to it.

The back-end is where the most work in this project is being done – it involves not only
building an application but also designing a data model and coming up with a methodology
for data transformation to represent phenological data intuitively.

3.1 Data flow

The amount and kind of data affect the implementation of the application. To understand
the structure of the application better, it is useful to the flow of data. DWD CDC OpenData
repository provides plant text CSV files that contain phenological records for various
plants, further put into one of the three categories: crops, fruits, or wild.

Here is shown an excerpt from the file PH_Sofortmelder_Obst_Apfel_akt.txt8 that contains
historical records for apple tree phenological data where each record references the station
measurement was taken at, object id (310 for apple tree), phase id, and the date of record.

Stations_id; ... Objekt_id; Phase_id; Eintrittsdatum;

 140; ... 310; 29; 20170806;

 140; ... 310; 5; 20180425;

 140; ... 310; 29; 20180729;

The data is somewhat normalized already since instead of station, plant, and phase data
there are ids which are described in other files:

• PH_Beschreibung_Phaenologie_Stationen_Sofortmelder.txt
• PH_Beschreibung_Pflanze.txt
• PH_Beschreibung_Phase.txt

Because of the nature of the data, it is possible to store it in a normalized fashion using a
relational database such as MySQL. A potential application data flow diagram is shown
in Fig. 5.

8 Apple tree phenological data. URL:

https://opendata.dwd.de/climate_environment/CDC/observations_germany/phenology/immediate_reporters/fr
uit/recent/PH_Sofortmelder_Obst_Apfel_akt.txt

6 Aleksei Ivanov

Fig. 5: Application data flow

On the figure above the data from opendata.dwd.de service is downloaded using some
data loader over HTTP. Since some of the data, such as information about the stations,
phases, and plant names does not change often it is useful to store it locally in a file cache.
After the data has been downloaded and processed it should be pushed to the database. A
common way to do this is by using an object-relational mapping (ORM), which helps to
abstract database-specific language and details by the means of providing an application
programming interface (API) to the developer.

In practice, this also helps with creating a database table schema by defining it in code
instead of doing this manually through the database command-line interface (CLI) by
typing SQL instructions. Such approach also helps to keep database schema in sync with
the code, reducing the number of errors while also abstracting from a specific database.
After the data has been pushed to the respective database tables it is useful to generate
views for the data in the database, which can give multiple benefits:

1. Increasing security by allowing access from the dashboard to the slice (view) of
data instead of all of it;

2. By removing extra data and adding indexes to the fields which are used to filter
data, which can significantly increase the speed of queries;

3. It gives the ability to calculate aggregate values of the data (as will further be
shown).

Grafana Dashboard for Phenological Data Monitoring 7

3.2 Architecture

Since this is a complex application, it will require multiple components to function:

• MySQL database server;
• Grafana web application;
• Web server to host application assets (i.e. images for the use in the dashboard);
• Software for phenological data download, processing, and upload to the

database.
The application will be hosted on a Linux server using Digital Ocean VPS hosting. It is
going to be served on the web using the Nginx9 reverse proxy and web server. For the
prototype, all of the components will be hosted on one server. Requests to Nginx are going
to be proxied to Grafana, which itself uses an Apache web server on a non-standard HTTP
port (3000). On the figure below proposed application infrastructure is shown.

Fig. 6: Application infrastructure

The program itself is run on a schedule using cron job scheduler. Using Nginx as a web
server an application assets directory is going to be hosted, which will allow hosting
custom files for the dashboard, such as images, along with the application. Grafana and

9 NGINX | High Performance Load Balancer, Web Server, & Reverse Proxy. URL: https://www.nginx.com

8 Aleksei Ivanov

the application will share the database. However, whilst Grafana will be only accessing
data in read-only mode through generated materialized views, the application will have
full control over the database – having an ability to insert data and change table schema
through migrations (discussed later in the implementation section).

4 Methodology: phase formalization and data processing

This chapter discusses how the data from the DWD CDC OpenData repository is
processed. To present it in the Grafana dashboard, retrieved data has to be processed and
transformed. Since phases in the repository are presented by text description, a
formalization procedure has to be carried out to formalize vague text descriptions of
phases into a stricter format.

4.1 Phase formalization

There needs to be a method to aggregate
phenological phase data effectively –
giving an ability to judge at a glance.
Fig. 7 shows a heatmap for each phase,
where temperature corresponds to the
day of the year in specified bounds. This
approach helps visualize intuitively
locations where the given phase occurs
on the given day of the year. However,
it has a drawback in that each map
represents the distribution of just one
phase, not giving a complete overview
and ability to compare phases between
each other, and because of this such
method is not suitable for this project.

Since the user has to be able to judge
using a single map at a glance about the
current phenological phases all around
the country an approach should be used
that would make it possible to compare
phases between each other. One of the
ways to do this is to assign a numeric
weight to each phase (Tab. 1).

Fig. 7: Location vs day of the year for a

given phase. Source: [Zha03]

Grafana Dashboard for Phenological Data Monitoring 9

Weight Phase ID Name

1 1 beginning of turning green
2 5 beginning of flowering
3 7 end of flowering
4 24 harvest
-1 31 autumn coloring of leaves

Tab. 1: Phase weights depending on their description

This gives an ability to compare phases formally and because of this, it becomes possible
to display them on a graph in a variety of formats – for example as colored dots on the
map, where the color corresponds to the weight of the phase. This approach is similar to
the BBCH scale, which is a scale from 0 to 9 that describes the whole phenological process
from the beginning of turning green to ripening and harvest or autumn leaf fall (Fig. 8,
Fig. 9).

Fig. 8: Main growth stages put on a scale from 0 to 9. Source: [BBC01]

10 Aleksei Ivanov

Fig. 9: Phenological growth stages according to the BBCH scale. Source: [Yan19]

By grouping phenological records from DWD CDC OpenData repository by date and
station (name and location) and averaging the weights of the phases of all plants in the
area for which records exist, it is possible to get insights into the general phenological
situation for the given station. Since the data provided is already classified into different
plant kinds (crops, fruits, and wild) it makes sense not to keep this grouping, since different
kinds of plants might have significantly different phase timing, which in turn might make
observation data non-representative.

To verify these previous years’ data has been grouped by region and plant type. The
resulting dataset was further grouped by date to get time-series from it while aggregating
weight values as a sum for each date. The cumulative value was chosen because it is more
visible than the average on the graph, however, introducing bias to the data since the
cumulative value is dependent on the number of records might not be equal for all stations
and dates. The resulting graphs are shown in Fig. 10, which proves that this approach
works and hence it will be used in this project.

Grafana Dashboard for Phenological Data Monitoring 11

Fig. 10: Phenological phases cumulative weight 30-day moving average by region

12 Aleksei Ivanov

4.2 Data processing

Data processing involves cleaning up and processing of raw data that is downloaded from
the DWD CDC OpenData repository, namely:

• Converting non-standard CSV format into a table representation inside the
program;

• Normalizing column naming scheme, since original data contains non-uniform
column table conversion with columns in some documents having a different
case. This step also allows to enforce stricter and application-specific naming
conversion;

• Stripping whitespaces surrounding the data;
• Extraction and conversion to application data types, since all data in raw CSV

files, is stored as text.
Here is an excerpt from the phase data definition file (original whitespaces preserved). It
is obvious that this file does not follow CSV standard: it contains semicolons instead of
commas as separators as well as each row includes an extra column named “eor” which
denotes the end of the row, even though the file itself already contains a newline symbol.

Stations_id; … Objekt_id; Phase_id; Eintrittsdatum; … eor;
 140; … 310; 29; 20170806; … eor;
 140; … 310; 5; 20180425; … eor;
After parsing this file, it is converted into a pandas data frame, which is a table
representation of the data in a Python program. During parsing, whitespaces are removed.
Then columns are modified in the program: column is renamed using a specified map.
Before this column names are converted to lower case because case varies in different files
provided by DWD.

{
 "streams": [
 {
 "type": "dwd-phenology",
 "field_map": {
 "stations_id": "station_id",
 "referenzjahr": "year",
 "qualitaetsniveau": "data_quality_bit",
 "objekt_id": "object_id",
 "phase_id": "phase_id",
 "eintrittsdatum": "date",
 "eintrittsdatum_qb": "date_quality_bit",
 "jultag": "day_of_year"
 }
 }
]
}

Grafana Dashboard for Phenological Data Monitoring 13

The resulting pandas data frame is shown below:

 station_id … object_id phase_id date …
0 140 … 310 29 2017-08-06 …
1 140 … 310 5 2018-04-25 …
The same procedure is done with stations, phases, and plants. However, before pushing
phases and plants their names are extracted to put them in different tables. This allows to
fully normalize data.

4.3 Data normalization

Data normalization allows to reduce duplication and facilitate data integrity (avoid missing
entries and provide a single source of truth). In this project, plant and phase data can be
normalized by extracting their names into separate tables. This will allow to decouple data,
which in turn will make it possible to make queries lighter in cases when they will not
need plant or phase names.

Furthermore, this will make it possible to add more data to already defined plants and
phases in the future, such as names in different languages, making the application more
versatile. Fig. 11 shows the normalized data model, which is derived from the data flow
diagram presented in Fig. 5. By creating a database schema using this diagram it will be
possible to store processed phenological data from DWD in a relational database.

Fig. 11: Normalized data model

14 Aleksei Ivanov

5 Implementation

The application is implemented using Python 3.6 programming language. The
configuration of the program is stored in a JSON config file (included in the appendix).
This file stores configuration for all data streams which are fetched by the program –
currently there is only one stream: “dwd-phenology”.

5.1 Program

The structure of the project is divided into multiple classes since it is written in Python,
which allows to use object-oriented approach. The diagram that represents all core
application classes is presented in Fig. 12. It is worth noting that database models and
migration classes are not shown on the diagram since they are considered an
implementation detail and hence are not important regarding the main purpose of the
program (data processing and aggregation).

Fig. 12: Simplified application diagram

The diagram above shows the relationship between the stream abstract class which is
implemented with the DwdStream class that contains all the business logic for data
processing and upload to the database. This class has an instance of CsvLoader, which is
responsible for reading DWD CDC OpenData CSV raw data and returning pandas data
frame. After that stream object continues to process downloaded data and pushes it into
the database.

Grafana Dashboard for Phenological Data Monitoring 15

5.2 Server

The server is a hosted cloud VPS running Ubuntu 18.04 (Fig. 13). This server is set up to
run three software servers: MySQL database server, Grafana application which is served
by the Apache webserver on port 3000, and Nginx web server and reverse proxy.

Fig. 13: SSH connection to the Linux VPS

Nginx serves as a reverse proxy to group all of the services and serve all of them via
HTTPS using a certificate generated by Let’s Encrypt. An excerpt from the Nginx
configuration file is shown below:

server {
 server_name scientific-project.aleksei.dev;

 location ^~ /data/ {
 alias /home/deploy/app/data/;
 }

 location / {
 proxy_pass http://127.0.0.1:3000;
 }
}

16 Aleksei Ivanov

The server cron job scheduler configuration file is shown below:

m h dom mon dow command
 0 * * * * bash /home/deploy/app/run.sh
 0 0 * * * bash /home/deploy/app/backup.sh
 * * * * * cd app && git pull > /dev/null 2>&1

5.3 Materialized views

Since MySQL does not have materialized views, they will be imitated by creating and
updating cache tables upon each data refresh. Functionally it does not differ from
materialized views except for the fact that they will have to be created “manually” from
the program each time. This can be easily achieved by using a bash script that will feed an
SQL file that defines these tables. Since the program will be run through the bash script
by the cron job scheduler anyway this would not inflict any major inconvenience.

Fig. 14: “Materialized view” cache tables are derived from various tables using SQL JOINs.

Grafana Dashboard for Phenological Data Monitoring 17

5.4 Dashboard creation

The dashboard consists of several panels using the Worldmap Panel plugin10. This plugin
makes it possible to show data on the map by utilizing the open-source project
OpenStreetMap11.

Fig. 15: Worldmap panel plugin showing data from the database

By utilizing materialized views, it is trivial to build a query in Grafana, since all
calculations were already done in the database. Through the addition of indexes on the
table fields, it is possible to get a significant speed increase on reading operations, which
is exactly what Grafana uses.

Fig. 16: Defined panel query for fruit plants

A similar procedure is done for other types of plants: crops and wild plants. This results
in three panels that each show average phenological phase data for each station location
and plant type.

10 Worldmap Panel plugin for Grafana. URL: https://grafana.com/grafana/plugins/grafana-worldmap-panel
11 OpenStreetMap. URL: https://www.openstreetmap.org

18 Aleksei Ivanov

6 Demonstration

The dashboard is accessible via the link: https://scientific-project.aleksei.dev. Upon
loading the user is redirected to the dashboard automatically (Fig. 17). Users can filter the
data by regions instead of displaying all the data by using the dropdown menu at the top.

Fig. 17: Grafana dashboard view

The dashboard uses a single data source which is a local MySQL database hosted on the
same server (Fig. 18).

Fig. 18: Grafana data source setup

Grafana Dashboard for Phenological Data Monitoring 19

At the bottom of the dashboard there is a map legend, describing colors with the names of
the phases that were given by the DWD:

Fig. 19: Crops phases on 2020-07-27

Fig. 20: Fruit phases on 2020-07-27

Fig. 21: Map legend

20 Aleksei Ivanov

7 Conclusion

In this project, an application prototype for phenological data monitoring was developed
using Grafana open-source dashboard solution. Open phenological data from the
Deutscher Wetterdienst repository was taken and an application was developed to process,
and store provided data. To present data in an intuitive fashion, a methodology was
developed which allowed to formalize textual phase data and make it possible to visualize
it one a map, giving the user a broad overview of the current phenological situation around
the country.

The developed methodology resembles BBCH phenological phases scale, however in its
current state it could lack the resolution of certain plant types – for example crops, where
the last phenological phase appears in the middle of the cycle during cut for hay. This
introduces an opportunity to improve the given approach and potentially re-evaluate phase
weighting.

Source code for this project is available at:

https://github.com/lexuzieel/dwd-phenology-stream

References

[Sch14] Schmidt G.; Schönrock S. und Schröder W. (2014): Case Study 1: Phenological Trends
in Germany. In Plant Phenology as a Biomonitor for Climate Change in

Germany.

[Zha03] Zhanga X.; Friedla M.A.; Schaafa C.B..S.H. et al. (2003): Monitoring vegetation
phenology using MODIS. Remote Sensing of Environment 84, 471–475.

[Yan19] Yan-Gang Z.; Gao; Shicai X. et al. (2019): The Phenological Growth Stages of Sapindus
Mukorossi According to BBCH Scale. Forests, 10, 6.

[BBC01] BBCH working group (2001): Growth stages of mono-and dicotyledonous plants.
Federal Biological Research Centre for Agriculture and Forestry.

