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Abstract

Polylogarithms at genus one can be represented as iterated integrals over differential
forms generated by a Kronecker function. The corresponding Kronecker form is a repre-
sentation independent, quasiperiodic one-form with a simple pole. In this thesis, we study
Kronecker forms defined on Riemann surfaces of higher genus, leading us to understand
the space they span. Our main results include a proof that the dimension of the space of
quasiperiodic one-forms with a simple pole is equal to the genus of the underlying manifold,
as well as constructive examples of the higher genus Kronecker forms one can use as a basis.
Using the language of theta functions, we identify Kronecker forms as ratios of odd theta
functions, satisfying a Fay identity. Using Schottky uniformizations, we identify Kronecker
forms as averages over the Schottky group, satisfying a procedure for understanding de-
generation limits, and corresponding to the components of Enriquez’ connection used in an
existing generalization of polylogarithms.
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1 Introduction

1.1 Scientific context

A substantial slice of research in the scope of theoretical physics has been devoted to developing
an understanding of particle physics and string theory [Sre07,LT89]. One aspect of these develop-
ments is in the formalization of scattering amplitude calculations, building upon the underlying
mathematics to allow for precision calculations of observables in corresponding theories. On the
side of quantum field theories, this is done through the study of Feynman integrals, describing
the amplitudes corresponding to processes that particles undergo [Wei22]. On the side of string
theories, this is done through the consideration of worldsheet integrals, coming out from the
calculations necessary for string amplitudes [SV10].

Over the past few decades, iterated integrals have become a key object in the mathematics
underlying calculations of scattering amplitudes. A particular family of iterated integrals con-
cerns itself with repeated logarithmic integrals on the complex plane, or Riemann sphere, known
as multiple polylogarithms [Gon01]. These polylogarithms present a compact way to give man-
ageable representations of results of Feynman integrals [Wei07,GSVV10] and worldsheet integrals
in string theories [BSS13]. However, these representations are not sufficient to encompass more
complicated processes, such as higher loop amplitudes in quantum field theories and one-loop
amplitudes in string theories [BBC+22]. The challenges arise from the appearance of underlying
manifolds that are of higher dimension, as Calabi–Yau manifolds, or of higher genus, as elliptic
and hyperelliptic curves.

Motivated by such calculations, a generalization of multiple polylogarithms on elliptic curves
has been formalized and used for calculations. The solutions to Feynman integrals, such as
the equal mass sunrise integral [BDDT18,AW18] and kite integral [AW18], have demonstrated
the applicability of elliptic polylogarithms to a variety of integrals in particle physics. The el-
liptic polylogarithms have also been applied towards developing the tools necessary to tackle
open and closed-string amplitudes at one loop [BMMS15] and developing procedures for recur-
sive calculations of corresponding integrals [BK21]. A key insight to the formalization used for
elliptic polylogarithms is the use of the Kronecker function to generate a tower of integration
kernels [BL11], corresponding to a flat connection used to generate polylogarithms. Using a
variable that is expressed in the Kronecker function’s quasiperiodicity, the Kronecker function is
expanded to give the components to differentials that are sufficient for expressing any integral
on a complex elliptic curve [BL11]. The Kronecker function is characterized by satisfying a Fay
identity [Mat19], an analogue of the partial fraction identity that allows corresponding elliptic
polylogarithms to be simplified. Further algebraic relations between polylogarithms can be un-
derstood through the connections between the Kronecker function and modular forms [BMS16].

As the scope of objects with an iterated integral representation has grown to encompass
those corresponding to genus one surfaces, Feynman integrals and string amplitudes correspond-
ing to higher genus surfaces are now under consideration [BOV21,MMP+23]. A further gen-
eralization of elliptic polylogarithms to hyperelliptic curves would allow manageable represen-
tations of such objects, and existing approaches to the formalization are already being pub-
lished [Enr14, EZ21, Ich22,DHS23]. Some approach the question by constructing higher genus
flat connections, uniquely identifying one algebraically [Enr14,EZ21], or using convolution rela-
tions to construct periodic integration kernels that serve as coefficients [DHS23]. There have also
been attempts to generalize the Kronecker function itself [Tsu23]. Building upon this existing
work, we seek to approach the question by studying how the Kronecker function may be char-
acterized, generalized to higher genus, and expanded into integration kernels for hyperelliptic
polylogarithms.
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1.2 Structure

In this thesis, we start by giving a review of the tools used for compact Riemann surfaces at
genus one and greater. In Section 2, we review the basics of Riemann surfaces, building up to
using theta functions and the Abel map in tandem to give a precise way to define functions with
quasiperiodicities and zeros we can control. In Section 3, we explore an approach to working
with higher genus Riemann surfaces through the uniformization provided by Schottky covers,
which allows functions to be defined as averages of contributions over the group generated by
the surface’s topology.

After a quick recap of genus zero multiple polylogarithms, we then apply theta functions and
Schottky covers to review the construction of the Kronecker function at genus one in Section 4,
following the three definitions given by [BL11]. As part of this review, we uniquely characterize
the Kronecker function at genus one by its quasiperiodicity and residue, and generalize the Schot-
tky representation from concentric covers [Cha22,Ber88] to ones with an arbitrary generator.

With Section 5, we describe some useful changes to the conventions we use for studying
Kronecker functions. Identifying the location of the pole explicitly and including the differential
dz in the definition, we study the representation-independent Kronecker form, and characterize
it by its quasiperiodicity and unit residue.

In Section 6, we present a new result characterizing the dimensions of spaces of quasiperiodic
differentials. In particular, the space of quasiperiodic differentials with a simple pole at a specific
location is equal to the genus of the Riemann surface, similar to periodic holomorphic differentials.
This means that in searching for Kronecker forms, it is sufficient to find as many independent
candidates as the genus of the underlying surface, since these will span the space of quasiperiodic
forms with a simple pole.

Finally, in Section 7 and Section 8, we give explicit representations of Kronecker forms using
theta functions and Schottky covers.

The representation in terms of theta functions uses an abelianized version of the homotopy
group, leaving us with commutative power-counting variables that are easier to work with, but
also with a smaller space of differentials. As a consequence of the Fay trisecant identity for theta
functions, we find a generalization of the Fay identity to the higher genus Kronecker form and a
starting point for an identity for the differentials that it generates.

The representation on the Schottky cover keeps non-commutative power-counting variables,
for which we are able to show an explicit expansion matching Enriquez’ connection [Enr14].
Although the Kronecker forms on the Schottky cover do not seem to satisfy a Fay identity at
higher genera, they do have promising results in other areas, including a convenient way to
understand the degeneration of the surface by cutting a cycle.

2 Defining theta functions

Understanding polylogarithms and their generalizations starts with understanding some tools
for compact Riemann surfaces. This section will define the concepts relevant to the remainder of
the thesis, starting with the topological and differential structure of the surface. This will build
up to defining the Abel map, that maps the abstract surface to a set of complex coordinates that
may be used to define functions. This will be used to define theta functions, which naturally use
these complex coordinates in a way that plays nicely with topological properties of the surface.

For a more detailed account of compact Riemann surfaces and theta functions on them,
one may follow [Ber10], which matches the definitions, conventions, and results reviewed in this
section.
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2.1 Riemann surface and differentials

In this thesis we will be dealing with compact Riemann surfaces M of genus h. The Riemann
surface has local charts Ui such that

⋃
i Ui =M, with local coordinates ϕi : Ui → C.

For a compact manifoldM of genus h, we can identify the fundamental group π1(M) which
contains information about homotopically distinct cycles1 on the surface. In particular, we can
identify a canonical basis of A-cycles and B-cycles, which we will label {Aj ,Bj}hj=1, chosen such
that the intersection numbers are

Ai#Aj = 0, Bi#Bj = 0, Ai#Bj = δij . (2.1)

As we define integration on our surface, it will be useful for us to have a space on which
integrations are unambiguously defined without going around extra cycles. We can do this by
defining the simply connected domain L, obtained from a dissection of theM by removing the
A-cycles and B-cycles and unfolding (see Figure 1). The resulting simply connected domain is
bounded by two copies of each cycle.

B1

A1

B2

A2

M
cut cycles→

A1

A−1
1

A2

A−1
2

B−1
1

B1

B2

B−1
2

L

Figure 1: A canonical dissection done at genus two, where the A-cycles
(blue) and B-cycles (red) are cut out of the double torus M, leaving an 8-
sided simply connected domain L.

Then, we can define a canonical basis of holomorphic Abelian differentials ωi that are nor-
malized on the A-cycles, and produce the period matrix τ upon integration on B-cycles∮

Ai

ωj = δij ,

∮
Bi

ωj = τij , (2.2)

where one can show that the period matrix is symmetric and has positive definite imaginary
part2,

τij = τji ; niIm(τij)nj > 0 ∀ n⃗ ∈ R. (2.3)

This period matrix serves a very important role as it contains all of the geometric information of
the surface, and we will later use the period matrix for theta functions (Section 2.3), Kronecker
functions (Section 4.2), and Kronecker forms (Section 7). To simplify the notation, since we are
not considering transformations of the period matrix in this thesis, we will omit it when listing
it as a parameter for the corresponding objects. However, it may be useful to study the effect of

1That is, elements of the fundamental group, closed curves on the Riemann surface, can be considered equiva-
lent if they can be smoothly deformed into each other. Since the actual coordinates that the curves follow do not
matter for this equivalence relation, elements are defined by topological properties, such as the holes or handles
of the surface they encircle.

2This condition is sometimes denoted by writing Im(τ) > 0.
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transformations of the period matrix in future works, since transformations of τ by the action
of Sp(2h,Z) give a geometrically identical surface (with some A and B redefined), but lead to
representations that converge more quickly.

At genus one, the period matrix corresponds to a single complex number, referred to as
the modular parameter. The condition on the positive definite imaginary part becomes simply
Im(τ) > 0. The generators of Sp(2,Z), τ 7→ τ + 1 and τ 7→ −1/τ , correspond to identifying
B1 7→ B1 + A1 and (A1,B1) 7→ (B1,−A1), redefining the generators of the homotopy group
through linear transformations.

2.2 The Abel map and Jacobian variety

Using the canonical basis of differentials, we can define the Abel map on the simply connected
domain L (Figure 1),

u : L → Ch, ui(z) =

∫ z

p0

ωi (2.4)

where p0 is an arbitrary basepoint for the integration. As we require our formulas to be inde-
pendent of the choice of this basepoint, we will find that the Abel map will typically appear only
in a difference ui(z)− ui(x) =

∫ z

x
ωi.

Since the Abel map is defined with the canonical differentials, it gives us a representation-
independent labeling of the points on the manifold. Furthermore, the normalization of the
canonical differentials gives us the quasiperiodic properties

u(z + Aj) =

∫ z+Aj

p0

ω⃗ = u(z) + δ⃗j , u(z +Bj) =

∫ z+Aj

p0

ω⃗ = u(z) + τ δ⃗j , (2.5)

which allow us to extend the definition of the Abel map beyond the simply connected domain
L, where we introduced δ⃗j ∈ Zh, defined by (δ⃗j)i = δij . To simplify the notation, the notation
can be generalized to using u(Aj) and u(Bj) without referencing a point, the integrations over
cycles are independent of the starting point.

By taking the target space of the Abel map modulo the periods in Equation 2.5, we identify
the Jacobian variety of the Riemann surfaceM

J(M) = Ch/(Zh + τZh), (2.6)

where (Zh+τZh) = Λ(M) is the lattice corresponding to the surface. This definition of the Jaco-
bian variety is useful as it makes the Abel map single-valued, quotienting out the aforementioned
quasiperiodicities.

2.2.1 Genus one Jacobian variety

The most well known example of the Jacobian variety is the one corresponding to the genus one
compact Riemann surface, the torus. The universal cover for the torus is a tiling of the complex
plane with parallelograms with edges corresponding to A and B-cycles, where the normalization
of ω1(z) indicates that we identify A = 1 and B = τ . Taking the quotient of C with respect
to the lattice Λ = Z + Zτ , we find the the Jacobian variety of the surface M, corresponding
to a single parallelogram from the universal cover. Uniquely to genus one, this means that the
simply connected domain corresponds exactly to the Jacobian variety of the surface, as seen in
Figure 2. This occurs only because the Jacobian variety and the Riemann surface that lives on
it are both of dimension 1 at genus one, a correspondence which will be absent at higher genus.
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M

cut cycles→

L

u7→

u(L) = J(M)

0 1

τ 1 + τ

Figure 2: Construction of the Jacobian variety of a torus with modular
parameter τ . From left to right we have: the torus labeled M, the simply
connected domain after the A and B-cycles are cut, and the image of this
simply connected domain after acting with the Abel map with the basepoint at
the intersection point of the cycles. The parallelogram formed by this image
is precisely the region we get from the Jacobian J(M) from the quotient
applied to C.

2.2.2 Genus two Jacobian variety

Let us consider the Jacobian variety corresponding to a Riemann surface of genus two. Though
the Jacobian variety is two-dimensional, the Riemann surfaceM is only one-dimensional. As a
result, we find that u(M) ⊂ J(M), i.e. the image of the surface of our manifold lives within
the variety, as sketched in Figure 3. In the figure, one can see that the boundaries of the simply
connected domain L are transformed by the Abel map into several four-sided boundaries, since
we can identify some points on the boundary of L with each other. Furthermore, the geometrical
intuition for how these boundaries produce multiple holes in our Riemann surface is not as simple
as the folding of the parallelogram at genus one. Nonetheless, one may imagine identifying the
opposite edges of every quadrilateral with each other, producing a hole from each quadrilateral,
from which one recovers a more familiar picture like in Figure 1.

This leads to a much more complex picture, since most of the points v⃗ ∈ J(M) do not
actually lie on the Riemann surface, and the holomorphic differentials present have non-trivial
representations that prevent us from restricting ourselves to a smaller space.

2.2.3 Restoring quasiperiodicity

Above, we defined the Jacobian variety as J(M) = Ch/(Zh+τZh), on which z⃗+Aj ≡ z⃗+Bj ≡ z⃗.
Though this formulation is useful for understanding the formal aspects of the topology of the
surface, it is not the best approach given that the rest of this thesis works with quasiperiodic
functions where we must distinguish between points that are a cycle apart.

Instead, for the remainder of this thesis, we will ignore the quotient with respect to the lattice,
working directly with Ch as the parameter space. The image of the manifold with the Abel map
allows us to reach a one-dimensional submanifold of the space. As part of this identification, we
will use the analytic continuation of the Abel map when moving around cycles, coming up with
infinite copies of the surface, just like the universal cover at genus one.
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A1

A−1
1

A2

A−1
2

B−1
1

B1

B2

B−1
2

L

u7→

u(L) ⊂ J(M)

Figure 3: A sketch of the Jacobian variety for a genus two Riemann surface,
projected from C2 to R3, by (z1, z2) 7→ (Re(z1),Re(z2), Im(z1) + Im(z2)), so
that A-cycles shift on the horizontal plane and B-cycles include contributions
along the z-axis. The shaded region corresponds to the image of the simply
connected domain in the variety, u(L), with yellow and orange on the ‘outside’
and blue and green on the ‘inside’. The boundary of this image corresponds
to the boundary of the L, with A and B-cycles labeled in blue and red re-
spectively. The point at the origin of the Jacobian variety corresponds to the
point at the top / bottom of L; these are equivalent since they are separated
by u(Ai +Bi + A−1

i +B−1
i ) = 0. This sketch overlooks the fact that the sur-

face must be smooth, and that the surface must meet the boundaries in such
a way that copies of the surface would meet smoothly as well.

2.3 Theta functions

The theta function is a key object for working with functions on a compact Riemann surface,
providing control over their zeros and periodicities. The standard definition of the theta function
is

Θ : Ch → C

z⃗ 7→
∑
n⃗∈Zh

exp(2πi[njτjknk/2 + njzj ]).
(2.7)

By using the periodicity of the exponential, and relabeling the sum, we find

Θ(z⃗ + δ⃗j) = Θ(z⃗),

Θ(z⃗ + τ · δ⃗j) = exp(−2πi(zj + τjj/2))Θ(z⃗),

Θ(−z⃗) = Θ(z⃗),

(2.8)

so the Θ function has some periodicities and quasiperiodicities, and is even.
Looking back at the way the Abel map interacts with cycles, we see that the two quasiperi-

odicity properties correspond to A and B-cycles,

Θ(u(z + Aj)) = Θ(u(z)) , Θ(u(z +Bj)) = exp(−2πi(u(z) + τjj/2))Θ(u(z)), (2.9)

where z ∈M.
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2.3.1 Characteristics

We can explore a larger family of theta functions by assigning them characteristics, which shift
some of the parameters in the infinite sum, manifesting some modified properties. The definition
of a theta function with characteristics ϵ, ϵ′ ∈ Ch, is

Θ [ ϵ
ϵ′ ] (z⃗) =

∑
n⃗∈Z

exp(2πi[(nj + ϵj)τjk(nk + ϵk)/2 + (nj + ϵj)(zj + ϵ′j)])

= exp(2πi[ϵjτjkϵk/2 + ϵjzj + ϵjϵ
′
j ])Θ(z⃗ + ϵ′/2 + τϵ/2).

(2.10)

The characteristics influence the quasiperiodicities of the theta function,

Θ [ ϵ
ϵ′ ] (z⃗ + δ⃗j) = exp(2πiϵj)Θ [ ϵ

ϵ′ ] (z⃗),

Θ [ ϵ
ϵ′ ] (z⃗ + τ δ⃗j) = exp(−2πi(ϵj + zj + τjj/2))Θ [ ϵ

ϵ′ ] (z⃗),
(2.11)

where the first line corresponds to A-cycles and the second to B-cycles.
For half-integer ϵ, ϵ′ ∈ Zh/2, we read the parity property

Θ [ ϵ
ϵ′ ] (−z⃗) = exp(4πiϵjϵ

′
j)Θ [ ϵ

ϵ′ ] (z⃗), (2.12)

where for ϵ = ϵ′ = 0 we recover the even theta function Θ.
Finally, the characteristics are related up to their real integer part,

Θ
[ ϵ+ν
ϵ′+ν′

]
(z⃗) = exp(2πiϵjν

′
j)Θ [ ϵ

ϵ′ ] (z⃗), ∀ν, ν′ ∈ Zh, (2.13)

which is particularly useful in the case that ϵ, ϵ′ ∈ Zh/2 since it means we can restrict ourselves
to ϵ, ϵ′ ∈ {0, 1/2}h.

In particular, when 4ϵjϵ
′
j is odd, our theta function itself is odd (Equation 2.12), which

manifestly gives us Θ [ ϵ
ϵ′ ] (0) = 0. Taking into account that Equation 2.13 restricts half-integer

characteristics to ϵ, ϵ′ ∈ {0, 1/2}h, we have 22h possible half-integer characteristics, of which
2h−1(2h − 1) are odd.

It is common to avoid writing out the full characteristics of theta functions, such as denoting

the odd theta function at genus one as θ1(z) = Θ
[
1/2
1/2

]
, or using a subscript to contain the

characteristics of the theta function. In this thesis, we restrict the use of subscripts to the way
they are defined in Section 2.4.2 to work with vectors or divisors. Instead, due to their prevalence
in the discussion of Kronecker functions and Kronecker forms in future sections, we will in general
write θ to indicate a consistently chosen, but arbitrary, odd theta function,

θ ≡ Θ [ ϵ
ϵ′ ] for some ϵ, ϵ′ ∈ Zh/2, such that 4ϵjϵ

′
j odd. (2.14)

2.3.2 Prime form

An object that comes up often in the study of compact Riemann surfaces, and a few times in
this thesis, is the prime form. It is defined as

E(z, x) =
θ(u(z)− u(x))

ψ(z)ψ(x)
, (2.15)

where θ is an arbitrary odd theta function, and ψ is a half-differential defined as

ψ(z) =

√√√√ h∑
j=1

∂vjθ(v⃗)
∣∣∣
v⃗=0⃗

ωj(z) =

√
dz

(
θ(u(z)− u(p))

)∣∣∣
p=z

. (2.16)

Using properties of the theta function, one can show that the prime form satisfies
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• Antisymmetry: E(z, x) = −E(x, z),

• A Periodicity: E(z + Aj , x) = E(z, x),

• B Quasiperiodicity: E(z +Bj , x) = exp(−2πi[τ/2 + u(x)− u(z)])E(z, x),

• Vanishing on the diagonal: E(z, x) = (z−x)√
dz

√
dx
(1 +O((z − x)2)).

Furthermore, the prime form is independent of the characteristics of the odd theta function
chosen; this can be proven by noticing that it has the same periodicities and divisor no matter
what characteristics are chosen.

2.4 Divisors

A very important topic when discussing functions on compact Riemann surfaces is the idea of a
divisor. Divisors are defined as formal sums of points with integer coefficients

D =
∑
i

niPi, (2.17)

where the degree of a divisor is the sum of the coefficients, that is deg(D) =
∑

i ni. In some of
the future sections, we will write Dk to indicate that we are speaking about a divisor of degree
k.

Divisors are useful for keeping track of the zeros and poles of functions, identifying the
coefficients as the orders of the zeros, using positive coefficients, and the orders of the poles,
using negative coefficients. For example, the divisor of the meromorphic function 1/z on the
Riemann sphere is D = (∞)− (0) as a formal sum, and the degree of the divisor is deg(D) = 0.
Indeed, it is possible to show that any single-valued, and consequently periodic, meromorphic
function onM has a divisor of degree zero.

However, the theta functions we are working with are quasiperiodic, so this result does not
apply. Indeed, the theta functions have no poles, and so for the remainder of this thesis, we
will only refer to strictly positive divisors, for which ni > 0. With this in mind, we will use
the concept of the divisor only to study more carefully the vanishing locus of theta functions as
they come up (Section 2.4), and the divergences those theta functions have for the corresponding
Kronecker functions (Section 4.2 and Section 7).

In order to make this connection to theta functions, we will rely on the Abel map of a divisor,
defined simply as

u

(∑
i

niPi

)
=
∑
i

niu(Pi). (2.18)

2.4.1 Jacobi inversion theorem

Though there are many properties that come out of understanding the structure of the Abel
map on the Jacobian variety3, the result useful to us in understanding the divisor of the theta
function is the Jacobi inversion theorem.

The Jacobi inversion theorem states that for every z⃗ ∈ J(M) we can find a divisor Dh of
degree h such that u(D) = z⃗. With few exceptions, known as special divisors, the choice of the
divisor corresponding to a particular vector is unique. In future sections, we will assume that

3Some of those not mentioned are that the Abel map is an immersion and embedding of M into J(M), as
well as the Abel theorem relating divisors of meromorphic functions with vanishing Abel maps [Ber10].
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none of the divisors we work with are special. This gives us a precise isomorphism between the h-
dimensional variety that the Riemann surface lives in, and the h-dimensional variety spanned by
h points that live on it. In the upcoming section, we will use this knowledge to draw connections
between the vectors in Ch that theta functions use as arguments and the corresponding divisors.

2.4.2 Divisors of theta functions

Though the odd theta functions above are sufficient to find functions that vanish at the origin,
we can develop even more control over the vanishing locus of the theta function by studying its
divisor. Writing θv⃗(u(z)) = Θ(u(z)− v⃗), one can show [Ber10, Proposition 5.2.2] that the divisor

Dh of θv⃗ ◦ u satisfies u(Dh) = v⃗ − K⃗, where K⃗ is the vector of Riemann constants

Kj =
τjj
2
−

h∑
k=1

∫ z=p0+Ak

p0

uj(z)ωk(z), (2.19)

where p0 is the basepoint of the Abel map. Using the Jacobi inversion theorem, we recognize
that this divisor Dh must be made out of h points, since it corresponds to an arbitrary vector in
Ch. Therefore, theta functions composed with the Abel map at genus h have precisely h zeros.

Rewriting the statement above using v⃗ = u(Dh) + K⃗, we see that Θ(u(z) − u(Dh) − K⃗)

vanishes when z is a point in D. Without loss of generality, we find that Θ(−u(Dh−1) − K⃗)
vanishes for any divisor Dh−1 of degree h− 1, which is sometimes used as the defining feature of
the vector of Riemann constants [EF00].

Instead of using the vector to define theta functions, we can identify a theta function directly
from its divisor, writing

θDh
(u(z)) = Θ(u(z)− u(Dh)− K⃗), (2.20)

which as a function of z has the divisor Dh. When searching for theta functions that vanish at
the origin, we can thus go beyond the odd theta functions suggested in Section 2.3.1. Choosing
Dh = p0 +Dh−1, the corresponding theta function satisfies

θDh
(u(p0)) = 0 =⇒ θDh

(⃗0) = 0. (2.21)

Having fixed the point p0, the remaining h−1 points contained in Dh−1 indicate that this family
of theta functions that vanish at the origin correspond to an (h− 1)-dimensional variety.

Conversely, a careful derivation tells us that the theta function’s vanishing locus is an (h−1)-
dimensional variety [Ber10, Proposition 5.2.3]

Θ(e⃗) = 0 ⇐⇒ e⃗ = u(Dh−1) + K⃗, (2.22)

which can be generalized to arbitrary theta functions as

θv⃗(e⃗) = 0 ⇐⇒ e⃗− v⃗ = u(Dh−1) + K⃗. (2.23)

At genus one, this tells us that theta functions vanish at a single point. This is consistent
with what we would expect, since we know from Section 2.2.1 that the Jacobian variety is the
same dimension at the cover, so the single point corresponds precisely to the degree 1 divisor
that defines the function. This special case at genus one uniquely allows us to identify that the
pole that 1/θ(α) has on the simply connected domain is only at α = 0, and can be cancelled
a linear term. Thus, α/θ(α) is holomorphic near α = 0, which will prove to be useful as we
consider the genus one Kronecker function in Section 4.2.
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At higher genus, however, theta functions vanish on some submanifold of Ch, making them
more challenging to work with. These difficulties are related to those we encountered when
describing the image of the Abel map in the Jacobian variety in Section 2.2.2, as there is a large
step up in the complexity of the analytic structure of the manifold as we step to higher genera.
A theta function vanishing at the origin will also vanish on a submanifold passing through it,
preventing us from cancelling the divergence by a term as simple as at genus one, a problem we
will deal with as we generalize the Kronecker function to higher genus in Section 7.3.1.

3 Defining Schottky covers

Schottky covers allow us to have a precise representation for Riemann surfaces of genus greater
than 1. This allows us to numerically verify the identities that we derive, as well as make
actual calculations of the kernels and their iterated integrals. More importantly, it provides
a mathematical framework for working with the non-commutative homotopy of the compact
Riemann surface4.

For the convenience of the reader, the definitions and most important tools of a Schottky
cover will be explained here. A complete account of Schottky covers and the conclusions they
allow us to make about Riemann surfaces is available in [Bob11].

3.1 Schottky cover definition

Figure 4: A genus two Schottky cover. The shaded region is the fundamental
domain L, lying outside the disks defining the Schottky cover. Each pair of
disks of the same color corresponds to a pair of A-cycles that are identified
with each other. Each of the large circles contains the images of the three
other circles when acting with the corresponding generator.

4We will find that on the Schottky cover, shifting a point by Bj and Bk will correspond to acting with non-
commuting Moebius transformations γj and γk, where γjγkz ̸= γkγjz. This is unlike the case on the Jacobian
variety, where with the Abel map we had u(z +Bj +Bk) = u(z +Bk +Bj).
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←→

Figure 5: A sketch of the Riemann sphere corresponding to the Schottky
cover in Figure 4. Identifying the circles with each other and deforming the
surface such that they meet reveals the handles of the corresponding genus
two surface, and the identification of the circles as A-cycles. Moving into a
circle on the left corresponds to moving around a handle on the right, which
for the purpose of multivalued functions brings the point to a copy of the
fundamental domain.

Recall that Moebius transformations on the complex plane, PSL(2,C), can be written as

M =

(
a b
c d

)
, with ad− bc = 1, acting on points as

Mz =
az + b

cz + d
, (3.1)

with their composition satisfying matrix multiplication, M1(M2z) = (M1M2)z. Similarly to

how translation by δ⃗j and τ δ⃗j were used to correspond to A and B-cycles on the Jacobian
variety (Equation 2.5), we will use Moebius transformations to construct a cover on which we
can understand the Riemann surface.

Consider h disjoint pairs of discs {Dj , D
′
j} with interiors {

◦
Dj ,

◦
D′

j}. We can identify Moebius
transformations γj ∈ PSL(2,C) that map the exterior of Dj to the interior of D′

j , and mapping
the boundary of Dj to the boundary of D′

j ,

γj(C̄ \
◦
Dj) = D′

j ,

γj(∂Dj) = ∂D′
j ,

(3.2)

where C̄ = C ∪ {∞}.
These Moebius transformations can be treated as the generators of a Schottky group Γ, a

finitely generated subgroup of PSL(2,C). We can identify a fundamental domain5 L = C̄ \⋃h
j=1(

◦
Dj ∪

◦
D′

j), containing a single ‘copy’ of our manifold. Applying the Schottky group to

5Note that despite using the same notation as the simply connected domain L from the previous section (e.g.
Figure 1), the fundamental domain is not simply connected. It is however similar in that it contains a single copy
of our manifold for the purpose of tracking quasiperiodicity, and one could in principle cut out appropriate curves
corresponding to B-cycles to recover a simply connected region.
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the fundamental domain we identify the covering Ω =
⋃

γ∈Γ γ(L), where we recognize the genus
h Riemann surface M = Ω/Γ. The boundaries of the discs Dj and D′

j can be interpreted as
A-cycles and the action of the generators γj can be interpreted as B-cycles. By construction,
functions with no monodromy around A-cycles become single-valued on this cover.

For these generators, we can identify corresponding fixed points Pj and P ′
j such that

γj(Pj) = Pj ; γj(P
′
j) = P ′

j

lim
n→∞

γnj Q = Pj ; lim
n→∞

(γ−1
j )nQ = Pj ∀Q ̸∈ {Pj , P

′
j}.

(3.3)

3.1.1 Concentric Schottky cover

←→

0

∞

L

Figure 6: A genus one Schottky cover, chosen such that the circles are
concentric, with nome q = 0.5. The shaded region is the fundamental domain
L. The A-cycles are marked with blue contours. The left image depicts the
Schottky cover on the complex plane, with images of the A-cycles under the
action of the Schottky group also marked in blue. The right image depicts
the Schottky cover on the corresponding Riemann sphere, demonstrating how
the ‘inside’ of the outer circle contains infinity.

The simplest example of a Schottky cover is the concentric Schottky cover used at genus one.
In this case, we identify two circles centered at zero with radii 1 and |q|, with |q| < 1. Formally,
we identify the inside of the circle with radius |q| as {z ∈ C̄ : |z| < |q|} containing 0, and the
inside of the circle with radius 1 as {z ∈ C̄ : |z| > 1} containing ∞. Then, the generator of the
Schottky group, γ1 : z 7→ qz, correctly maps the outside of one circle to the inside of the other.

In this case, ω1 = 1
2πi

dz
z , and we find that the modular parameter is

τ =

∫ γ1x

x

ω1 =
1

2πi
[ln(qx)− ln(x)] =

ln(q)

2πi
+ n, (3.4)

for n ∈ Z, where this ambiguity by an integer can be ignored6. This allows us to identify
q = e2πiτ , commonly refered to as the nome of the genus one surface, and a common parameter
used for expansions of functions since Im(τ) > 0 =⇒ |q| < 1 ensures convergent power series.

6It corresponds to the transformation τ 7→ τ + 1, one of the generators of the Sp(2,Z) symmetry group of the
modular parameter. Since Schottky covers identify A-cycles with circles, there is an ambiguity for adding extra
A-cycles to the modular parameter.
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3.2 Holomorphic differential basis

In order to have well-defined sums over elements of the group, we will need to define cosets

Γ/Γi = {γn1
j1
· · · γnk

jk
: γjk ̸= γi},

Γi\Γ = {γn1
j1
· · · γnk

jk
: γj1 ̸= γi},

(3.5)

which don’t end (Γ/Γi) or don’t start (Γi\Γ) with a particular generator or its inverse.
Using these cosets, we can identify the canonical holomorphic differentials corresponding to

the Schottky group

ωi(z|Γ) =
1

2πi

∑
γ∈Γ/Γi

(
1

z − γ(P ′
i )
− 1

z − γ(Pi)

)
dz

=
1

2πi

∑
γ∈Γi\Γ

(
1

γ(z)− P ′
i

− 1

γ(z)− Pi

)
d(γ(z)),

(3.6)

which can then be used to define the Abel map

ui(p|Γ) =
∫ p

p0

ωi =
1

2πi

∑
γ∈Γ/Γi

ln{p, γ(P ′
i ), p0, γ(Pi)}

where we use the cross-ratio {a, b, c, d} = (a−b)(c−d)
(a−d)(c−b) . One way to recognize these differentials is

by recalling the normalization conditions they must satisfy when integrating along the A-cycles.
The circle corresponding to Aj contains the fixed point Pj , as well as both γPk and γP ′

k for
γ = γj · · · . Integrating along the circle, we can use the Cauchy residue theorem, where the
residues from γPk and γP ′

k cancel each other. The only contribution that will not cancel out is
when integrating ωj since it includes dz/(z − Pj), giving the unit normalization we desire.

Since the Abel map is made out of cross-ratios of the points, it is invariant under Moebius
transformations, where we transform each point as z 7→ Mz and elements of the group as
γ 7→MγM−1,

{Ma,Mb,Mc,Md} = {a, b, c, d} =⇒ ui(Mp|MΓM−1) = ui(p|Γ). (3.7)

This means that the period matrix is preserved under these transformations too, implying
that Schottky covers related by a Moebius transformation represent the same Riemann surface.
Thus, when constructing differentials on the surface, which are independent of the representation,
we must be careful to construct them in a way that is Moebius invariant. In order to do this, we
can take a look at our fundamental building blocks and see how they transform

d(Mz) = d

(
az + b

cz + d

)
=
a(cz + d)− c(az + b)

(cz + d)2
dz =

1

(cz + d)2
dz,

(Mz −Mx)n =

(
az + b

cz + d
− ax+ b

cx+ d

)n

=
1

(cz + d)n(cx+ d)n
(z − x)n.

(3.8)

Indeed, with these properties in mind, we can verify that each term in the expansion of
ωi(z|Γ) is Moebius invariant7,

d(Mz)(MP ′
i −MPi)

(Mz −MPi)(Mz −MP ′
i )

=
dz(P ′

i − Pi)

(z − Pi)(z − P ′
i )
. (3.9)

As we make definitions for one-forms in future sections, we will write them using analogous
Moebius invariant terms to make them independent of the choice of Schottky cover.

7In some sense, one may interpret these terms as cross-ratios with a ‘repeated’ variable making the differential.
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4 Polylogarithms and the Kronecker function at low gen-
era

With the tools available to us on compact Riemann surfaces, we review existing definitions of
multiple polylogarithms at genus zero [Gon01] and genus one [BL11]. The genus zero polyloga-
rithms serve as a starting point for understanding what polylogarithms are and what properties
we desire from the integration kernels. The genus one polylogarithms are the inspiration for the
generalizations the remainder of the thesis proposes. Unlike the genus zero case, where only a
single integration kernel is necessary, the genus one construction relies on a generating function
for an infinite number of kernels. This generating function, known as the Kronecker function,
will be the central focus of our analysis.

4.1 Polylogarithms at genus zero

Multiple polylogarithms are defined as

G(a1, a2, · · · , an; z) =
∫ z

0

dt

t− a1
G(a2, · · · , an; t) (4.1)

where the length 0 polylogarithm is normalized G(; z) = 1, except when the argument z coincides
with the basepoint G(⃗a; 0) = G(; 0) = 0. The label a⃗ controls the locations of the poles of the
integration kernels.

Due to their definition as iterated integrals, multiple polylogarithms satisfy a shuffle relation

G(a1, · · · , ar; z)G(ar+1, · · · , ar+s; z) =
∑

σ∈
∑

(r,s)

G(aσ(1), · · · aσ(r+s); z) (4.2)

where
∑

(r, s) is a subgroup of the permutation group Sr+s acting on {a1, · · · , ar+s} that leaves
the order of the elements {a1, · · · , ar} and {ar+1, · · · , ar+s} unchanged.

We also find that the integration kernels present in the polylogarithms satisfy a partial fraction
identity

1

t− a
1

t̃− a
=

1

t− a
1

t̃− t
+

1

t̃− a
1

t− t̃
, (4.3)

which allows one to remove the argument of the polylogarithm from the label [BSS13, Equation
5.21].

4.2 Polylogarithms and the Kronecker function at genus one

Unlike the genus zero case, where only a single integration kernel was necessary, polylogarithms
at genus one require an infinite tower of integration kernels. These kernels g(m) are conveniently
generated by the Kronecker function F : C× C→ C as

αF (z, α) =

∞∑
m=0

g(m)(z)αm, (4.4)

where F (z, α) and g(m)(z) are functions of z ∈ C, with α as a power-counting variable, and
m indicating the corresponding weight of the kernel g(m). The expansions for the kernels are
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known, with the lowest weights being

g(0)(z) = 1, (4.5)

g(1)(z) = π cot(πz) + 4π

∞∑
m=1

sin(2πmz)

∞∑
n=1

qmn, (4.6)

g(2)(z) = −2ζ2 + 8π2
∞∑

m=1

cos(2πmz)

∞∑
n=1

nqmn, (4.7)

where q = exp(2πiτ). The only kernel containing a pole at z = 0 is g(1), serving as an analogue
of 1/z.

With these integration kernels, indexed by their weight m, we can define multiple elliptic
polylogarithms as

Γ̃(m1 m2 ··· mn
a1 a2 ··· an

; z) =

∫ z

0

dt g(m1)(t− a1)Γ(m2 ··· mn
a2 ··· an

; t). (4.8)

These polylogarithms satisfy many properties analogous to those at genus zero [BL11,BDDT18],
though a full description is beyond the scope of this thesis.

Focusing on the Kronecker function, we can uniquely identify it8 as a function of z ∈ C and
a formal variable α, with the quasiperiodicity and single simple pole

F (z + 1, α) = F (z, α) ; F (z + τ, α) = e−2πiαF (z, α),

resz=0F (z, α) = 1.
(4.9)

Applying the expansion of the Kronecker function to the integration kernels (Equation 4.4), we
find that the above properties translate to

g(m)(z + 1) = g(m)(z) ; g(m)(z + τ) =

m∑
k=0

(−2πi)kg(m−k)(z),

resz=0g
(m)(z) = δm1.

(4.10)

Identifying z as a coordinate on the universal cover of our torus with period matrix τ , we can
recognize the quasiperiodicities of the Kronecker function as corresponding to A and B-cycles.

Furthermore, the Kronecker function satisfies a Fay identity [BL11]

F (z, α)F (z̃, α̃) = F (z, α+ α̃)F (z̃ − z, α̃) + F (z̃, α+ α̃)F (z − z̃, α), (4.11)

which can be verified by studying the residues and quasiperiodicity of both sides of the equation.
Aside from the Kronecker function being characterized as a fundamental solution of the Fay
identity [Mat19], it implies an identity for the integration kernels [BSS13]

g(m)(z1)g
(n)(z2) =(−1)n−1g(m+n)(z1 − z2)

+

n∑
r=0

(
m+ r − 1

r

)
g(m+r)(z1)g

(n−r)(z2 − z1)

+

m∑
r=0

(
n+ r − 1

r

)
g(n+r)(z2)g

(m−r)(z1 − z2),

(4.12)

8This is shown in Section 6, and is only true at genus one. At higher genera, analogous constraints leave us
with a larger space of functions.
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a proof of which is contained in Appendix A. This Fay identity for the kernels serves as an
analogue to the partial fraction identity (Equation 4.3) at genus zero.

With all these properties in mind, let us move on to a few definitions given for the Kronecker
function [BL11].

4.2.1 Theta function representation

The first and most commonly given definition of the Kronecker function is in terms of the unique
odd theta function at genus one, which we simply denote θ (Equation 2.14),

F (z, α) =
θ(z + α)θ′(0)

θ(z)θ(α)
. (4.13)

Since at genus one, the universal cover is identical to the Jacobian variety, we can omit the
Abel map that the theta function typically uses for inputs of points. Using the properties of the
odd theta function, Verifying the defining properties of this Kronecker function

θ(v + 1) = θ(v) =⇒ F (z + 1, α) = F (z, α),

θ(v + τ) = e−2πivθ(v) =⇒ F (z + τ, α) =
e−2πi(z+α)

e−2πiz
F (z, α) = e−2πiαF (z, α),

θ(z) ≃ θ′(0)z +O(z3) =⇒ resz=0F (z, α) = 1.

(4.14)

Furthermore, the theta function representation is the original source of the Fay identity of
the Kronecker function [Mat19], since the theta functions are known to satisfy the Fay trisecant
identity [Mum84]9

θ(z + α)θ(z̃ + α̃)θ(z − z̃)θ(α+ α̃) =

θ(z + α+ α̃)θ(z − z̃ − α̃)θ(z̃)θ(α)+
θ(z̃ + α+ α̃)θ(z − z̃ + α)θ(z)θ(α̃)

(4.15)

which implies after division by θ(z− z̃)θ(α+ α̃)θ(z̃)θ(α)θ(z)θ(α̃) and multiplication by θ′(0) the
Fay identity for the Kronecker functions (Equation 4.11).

4.2.2 Schottky cover representation

In [BL11], we read the definition

F (z, α) = −2πi

(
v

1− v
− w

1− w
+
∑

m,n>0

(vmw−n − vnw−m)qmn

)
(4.16)

where10 v = e2πiz, w = e−2πiα, and q = e2πiτ .
As noted in [Cha22], we can identify v as a coordinate on a concentric genus one Schottky

cover Γ (Figure 6), with γ1 : p 7→ qp. With this identification, we can instead write the Kronecker
function on the concentric Schottky cover as

FSchottky(v, w) =
∑
n∈Z

qn

qnv − 1
w−n. (4.17)

9Different sources cite different identities, e.g. [Mat19] uses a Riemann identity [Mum83]. However, at genus
one, these identities are equivalent.

10Note that the definition of w differs from what is used in [BL11]. Their identification more uniformly defines
exponentiated variables; however, identifying w as done in this thesis makes it more clear as the quasiperiodic
factor when z is shifted by a B-cycle.
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verifying the desired properties of the Kronecker function as,

z 7→ z + 1 corresponds to v 7→ v =⇒ FSchottky invariant,

z 7→ z + τ corresponds to v 7→ qv =⇒ FSchottky 7→ wFSchottky,

z = 0 corresponds to v = 1 where resv=1FSchottky(v, w) = 1.

(4.18)

Let us show the equivalence of the representations in Equation 4.16 and Equation 4.17. By
splitting the sum above, we find

FSchottky(v, w) =
∑
n>0

qn

qnv − 1
w−n +

1

v − 1
+
∑
n>0

q−n

q−nv − 1
wn, (4.19)

where we can expand the fractions with a geometric series

=

∑
n>0

(−qnw−n)
∑
m≥0

qmnvm

+
1

v − 1
+

∑
n>0

wn 1

v

∑
m≥0

qmnv−m


=

(
−1

v

∑
m,n>0

vmw−nqmn

)
− 1

v

v

1− v
+

(
1

v

w

1− w
+

1

v

∑
m,n>0

v−mwnqmn

)

=
1

2πiv
F (z, α).

(4.20)

This discrepancy, noticed in [Cha22], is due to the consideration that the object that is
invariant under a change of representation to the Schottky cover is the one-form corresponding
to the Kronecker function. Indeed, we find

dv = d(e2πiz) = 2πie2πizdz = 2πivdz =⇒ FSchottky(v, w)dv = F (z, α)dz. (4.21)

Furthermore, one can go beyond previous works by identifying a representation of the Kro-
necker at genus one on an arbitrary Schottky cover as

FSchottky(v, w)dv =
∑
n∈Z

qndv

qnv − 1
w−n

=
∑
n∈Z

d(γn1 v)

γn1 v − x
P ′
1 − x

P ′
1 − γn1

w−n,

(4.22)

where γ1 is the generator of the Schottky group, x is the image of the pole in the new coordinates,
and P1 is a fixed point of the generator. This matches the result on the concentric Schottky cover
by identifying γ1 : v 7→ qv, x = 1, and P1 = ∞. Establishing the equivalence for an arbitrary
Schottky cover relies on considering Moebius transformations of the group, as one can check that
v 7→Mv, x 7→Mx, γ1 7→Mγ1M

−1 for M ∈ PSL(2,C) leaves the expression unchanged.

4.2.3 Eisenstein series representation

The last definition takes advantage of the Eisenstein function Ej and Eisenstein series ej . These
are defined as

Ej(z, τ) = lim
L→∞

L∑
m,n=−L

1

(z +m+ nτ)j
; ej(τ) =

L∑
m,n ∈ Z

(m,n) ̸= (0, 0)

1

(m+ nτ)j
, (4.23)
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where the careful limits on the sum for Ej are necessary to correctly interpret the case when
j = 1 with slower convergence. In particular, though the sum for E1 seems to include every
combination of (m,n), which would typically make it periodic, one actually finds that

E1(z + τ, τ) = E1(z, τ)− 2πi. (4.24)

For j > 1, since Ej+1(z, τ) = − 1
j ∂zEj(z), we find that periodicity is restored.

With these definitions in mind, we find that the Kronecker function is defined as [BL11]

F (z, α) =
1

α
exp

−∑
j≥1

(−α)j

j
(Ej(z, τ)− ej(τ))

 , (4.25)

for which the periodicity is clear from the periodicity of Ej , and the residue can be found through
a careful calculation noticing that Ej(z, τ)− ej(τ) ≃ z−j for small z, and using the Taylor series
for a logarithm in the exponential.

This representation finds use in research due to the connections the Eisenstein series has
to results in number theory, such as revealing relations between multiple zeta values [BMS16].
However, we will not build upon this representation in this thesis, as it is not yet clear how it
may be generalized to higher genus. Instead, such questions are left open, and are mentioned in
Section 9.1.5.

4.2.4 Periodic analogue

As a consequence of the Liouville theorem, functions on the torus cannot be both periodic and
meromorphic. In the construction above, we have defined only holomorphic and meromorphic
objects, and so the kernels are quasiperiodic as a result (Equation 4.10). However, in some appli-
cations, it is preferable to give up the holomorphicity for complete periodicity of the generating
function and integration kernels. This is the approach taken by the definitions in [BL11], the
applications in [BDDT18], and recent approaches to generalizations as in [DHS23].

With the quasiperiodicity above, it is easy to modify the Kronecker function by finding a
factor C(z, α) satisfying C(z + τ, α) = e2πiαC(z) and C(0, α) = 1. A suitable choice is

C(z) = exp

(
2πiα

Im(z)

Im(τ)

)
, (4.26)

resulting in the periodic Kronecker function

Ω(z, α) = exp

(
2πiα

Im(z)

Im(τ)

)
F (z, α). (4.27)

Naturally, we then have
Ω(z + τ, α) = Ω(z, α), (4.28)

as well as periodicity for the kernels f generated by αΩ(z, α) =
∑∞

m=0 f
(m)(z)αm,

f(z + τ) = f(z). (4.29)

5 Mathematical conventions for higher genera

5.1 Identification of the pole

At lower genera, when seeking a differential with a pole at x, we would simply write dz/(z − x)
or g(1)(z − x)dz. This notation is suitable on the corresponding universal covers due to the
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translation invariance of those surfaces. However, as we go to higher genus, there does not
exist a translation invariant cover, so the pole must be explicitly identified separately from the
variable. Thus, we will change the labeling of the Kronecker function as

F (z − x, α)dz 7→ F (z, x, α)dz. (5.1)

In general, we will reserve the first argument for the parameter corresponding to the differ-
ential, the second argument for the parameter corresponding to the location of the pole, and the
third argument for the variable related to power-counting or quasiperiodicity.

5.2 Differential structure

At higher genus, it will become ever more important to consider what the Kronecker function
looks like in different representations. As we transform between representations, we end up
with different charts for our manifoldM, which imposes transformation rules on coefficients of
differentials

ω = f(z)dz = f̃(φ(z))d(φ(z)) =⇒ f̃(φ(z)) = φ′(z)f(z). (5.2)

This is also true when considering how our objects transform when a point is moved by a
cycle11, where

ω(z +Bj) = ω(γj(z)) = f(γjz)d(γjz) = γ′j(z)f(γjz)dz. (5.3)

In order to study the objects in different representations, and have better control over their
quasiperiodicities it is more appropriate to study the differential forms, which are not affected
by the transformation properties. Thus, we will redefine F to be a Kronecker form, which will
be a generating function for differentials. At genus one, this corresponds to redefining

F (z, x, α) dz︸︷︷︸
on universal cover

= F (z, x, α)

in general︷︸︸︷
ω(z) 7→ F (z, x, α). (5.4)

With this differential structure in mind, the unit residue of the Kronecker function corresponds
to identifying

resz=xF (z, x, α) = dz, (5.5)

which is a convention we will keep as we go to higher genus.

5.3 Quasiperiodicity

At higher genera, we will have a larger homotopy group to consider, which will require keeping
track of a greater number of quasiperiodicities. The appropriate generalization of the Kronecker
function preserves its invariance under A-cycles, and multiplicative monodromies under B-cycles
which we will label with variables wj ,

F (z + Aj , x, w⃗) = F (z, x, w⃗) ; F (z +Bj , x, w⃗) = wjF (z, x, w⃗). (5.6)

At genus one, recall that F (z+τ, α) = exp(−2πiα)F (z, α), so we can identify w1 = exp(−2πiα).
As we go to higher genus, depending on the representation, we will make different choices for
the meaning of the variables wj .

11The only reason this didn’t affect the properties of the Kronecker function at genus one is that on the universal
cover, γ(z) = z + τ =⇒ γ′(z) = 1.
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In Section 7, we will work with commutative wj , which we can identify with exp(−2πiαj),
since that is the natural quasiperiodicity produced by theta functions. Essentially, the use of the
Abel map will restrict us to working with the homology group.

In Section 8, however, we have the freedom to use arbitrary non-commutative wj , which we
will identify with exp(b), using b as a power-counting variable. In this case, we will be able to
manifest quasiperiodic factors corresponding to the full homotopy group.

6 Basis of quasiperiodic differentials

In the study of compact Riemann surfaces, we are familiar with the basis of periodic holomorphic
differentials (Equation 2.2). As we seek to understand the Kronecker form, a one-form with a
simple pole and power-counting variables expressed in its quasiperiodicity, we realize that this
amounts to studying the space of all such quasiperiodic differential forms with simple poles.

In this section, we will demonstrate that the quasiperiodicity of differential forms is closely
related to the presence of simple poles in Section 6.2. Then in Section 6.3, we will prove a special
case of the Riemann bilinear identity for quasiperiodic holomorphic forms, relating an integral
over the two-form H̄ ∧H to the periods H has over the A and B-cycles. Finally, putting these
together, we will prove a new result about the dimension of the space of quasiperiodic forms.
Holomorphic quasiperiodic forms are (h− 1)-dimensional space, and meromorphic quasiperiodic
forms with a single simple pole are an h dimensional space.

In particular, at genus one, the Kronecker form is the unique quasiperiodic differential form,
demonstrating its significance. At higher genus, we have a space of possible Kronecker forms to
explore, analogous to the higher-dimensional space of periodic holomorphic forms. The repre-
sentations of the basis necessary to span this space will be given as Kronecker forms in Section 7
and Section 8.

6.1 Conventions for quasiperiodic differentials

We will use H(z, {wj}hj=1) to refer to holomorphic differentials, satisfying periodicity properties

H(z + Aj , {wj}hj=1) = H(z, {wj}hj=1) ∀j ∈ {1, · · · , h} (6.1)

H(z +Bj , {wj}hj=1) = wjH(z, {wj}hj=1) ∀j ∈ {1, · · · , h}, (6.2)

where wj is an arbitrary element of some algebra.
We will also use the letters F and G when appropriate, referring to differentials with the same

quasiperiodicities; usually using F to refer to differentials with a known and controlled pole, and
G to refer to arbtirary meromorphic differentials.

Knowing the quasiperiodicity properties above, we may actually decompose the forms into
components. Depending on whether our algebra of quasiperiodicities is commuting, we will
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have12

[wi, wj ] = 0 ∀i, j =⇒ H(z, {wj}hj=1) =
∑
n⃗∈Z

( h∏
j=1

w
−nj

j

)
hn⃗(z), where hn⃗(z +Bj , · · · ) = hn⃗+δ⃗j

(z)

(6.3)

[wi, wj ] ̸= 0 ∀i, j =⇒ H(z, {wj}hj=1) =
∑
γ∈Γ

W (γ−1)h(γz), where W : γn1
i1
· · · γns

is
7→ wn1

i1
· · ·wns

is

(6.4)

where we use the notation from the Schottky group as a convenient shorthand for working with
non-commutative B-cycle transformations, and (δ⃗j)i = δij .

6.2 Quasiperiodicity and poles

The first step to understanding the space of functions is to recognize how quasiperiodicity makes
A-periods change, producing non-zero integrals along the boundary of the fundamental domain
which must be related to poles contained therein.

Consider the integral

I =

∮
∂L
H =

h∑
j=1

(∫ P+Aj

P

+

∫ P+Aj+Bj

P+Aj

+

∫ P+Bj

P+Aj+Bj

+

∫ P

P+Bj

)
H =

h∑
j=1

(1− wj)

∫ P+Aj

P

H.

(6.5)
Its path bounds the fundamental domain on the Schottky cover, at which point we can use the
Cauchy residue theorem to identify

I = 2πi
∑
x∈L

resz=xH(z). (6.6)

Thus, when H is holomorphic, we find that
∑h

j=1(1− wj)
∫ P+Aj

P
H = 0.

6.3 Riemann bilinear identity for quasiperiodic holomorphic forms

The goal of this section is to show that∮
Aj

H = 0 ∀ j, {wj} =⇒ H ≡ 0, (6.7)

so the sum of the A-periods of a holomorphic differential vanishing implies that the differential
itself was zero. Our proof will follow a similar structure to [Ber10, Proposition 3.1.2], using a
special case of a modified version of the Riemann bilinear identity.

We will study integrals over the two-form H̄ ∧H, where H̄ is defined as

[wi, wj ] = 0 ∀i, j : H =
∑
n⃗∈Z

( h∏
j=1

w
−nj

j

)
hn⃗(z), H̄ =

∑
n⃗∈Z

( h∏
j=1

w
nj

j

)
h̄n⃗(z), (6.8)

[wi, wj ] ̸= 0 ∀i, j : H =
∑
γ∈Γ

W (γ−1)h(γz), H̄ =
∑
γ∈Γ

W (γ)h(γz), (6.9)

12Technically, each formula requires an extra w-dependent constant in case our differential includes terms that
don’t have integer powers of w. For the sake of clarity, this constant is omitted, as it does not affect any of the
upcoming proofs, and does not appear in practice in future sections.
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such that H̄ ∧H is periodic.
Then, when considering an integral of H̄ ∧H over the simply connected domain L (Figure 1),

we can expand each one-form into components and we find that the w-independent terms corre-
spond to an integral over strictly non-negative terms, equal to 0 only when the entire function
H vanishes. For [wi, wj ] ̸= 0 ∀i, j,∫

L
(−i)H̄ ∧H =

∫
L
(−i)

∑
γ1∈Γ

∑
γ2∈Γ

h̄(γ1z)h(γ2z)W (γ1γ
−1
2 )dz̄ ∧ dz

=

∫
L

∑
γ∈Γ

|h(γz)|2 + (terms containing w)

 dx ∧ dy.
(6.10)

with an analogous result for [wi, wj ] = 0 ∀i, j. Thus, we see that
∫
L(−i)H̄ ∧H = 0 for arbitrary

w, implies that H ≡ 0.
On the other hand, defining a function H̃(z) =

∫ z

p
H, such that d(H̄H̃) = H̄ ∧ H, we find

using Stokes theorem∫
L
(−i)H̄ ∧H = (−i)

∫
∂L

H̄H̃

= (−i)
h∑

j=1

(∫ P+Aj

P

+

∫ P+Aj+Bj

P+Aj

+

∫ P+Bj

P+Aj+Bj

+

∫ P

P+Bj

)
H̄H̃

= (−i)
h∑

j=1

[(∫ P+Aj

P

H̄H̃ −
∫ P+Aj+Bj

P+Bj

H̄H̃

)
+

(∫ P+Aj+Bj

P+Aj

H̄H̃ −
∫ P+Bj

P

H̄H̃

)]

= (−i)
h∑

j=1

[∫ P+Aj

P

H̄(H̃(z)− H̃(z +Bj)) +

∫ P+Bj

P

H̄(H̃(z + Aj)− H̃(z))

]

= i

h∑
j=1

[∮
Bj

H̄

∮
Aj

H −
∮
Aj

H̄

∮
Bj

H

]
.

(6.11)
Consequently

∮
Aj
H = 0 ∀ j, {wj} =⇒

∫
L(−i)H̄ ∧H = 0 ∀ {wj} =⇒ H ≡ 0. In particular,

this means that the dimension of the space of quasiperiodic holomorphic forms does not exceed
h− 1, which we can prove by contradiction.

Suppose we are be able to find h linearly independent Hi. Considering the h × h matrix
Aij =

∮
Ai
Hj , we know it cannot have a rank greater than h− 1 since as a result of Section 6.2,

we have that A periods for a holomorphic form can form a linear combination that vanishes.
Since the matrix is not of full rank, there must also be a linear combination of Hj that vanishes,
our assumption that h linearly independent Hi existed was false.

6.4 Construction of an arbitrary form given a basis

Having understood that the space of quasiperiodic differential forms is of at most dimension
h − 1, let us show how we could construct arbitrary functions given a basis with that many
independent elements. Explicitly showing an existence of such a basis is left for later sections
(Section 7 and Section 8).

Using the result of Section 6.2, we know that the A-periods of a holomorphic differential form
satisfy a linear relation. This means that only h − 1 of the A-periods are independent, so we
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will choose to ignore Ah. Suppose we have h− 1 holomorphic forms Hi that are independent; in
particular, we find that the matrix Aij =

∮
Ai
Hj is invertible. Then, for some unknown H, we

can identify the vector of A periods Pi =
∮
Ai
H. Then, writing ci = (A−1)ijPj we find that∮

Ak

H −

 h∑
j=1

cjHj

 = 0 ∀k = 1, · · · , h, (6.12)

and so by the conclusion of Section 6.3, since all A-periods vanish, including Ah, we must have
that the differential H −

∑h
j=1 cjHj vanishes too. Thus, H =

∑h
j=1 cjHj .

To find a basis for general quasiperiodic meromorphic forms, we must include an extra element
in our basis that may contribute to the pole. Suppose we have quasiperiodic form F (z, x) with
a single simple pole satisfying resz=xF (z, x) = dz, for arbitrary x ∈ L. Then, we may write an
quasiperiodic meromorphic form G with simple poles with residue ridz at points xi as

G =
∑
i

riF (z, xi) +H; H holomorphic, (6.13)

where we use the result above for holomorphic forms to express H in the basis. If we fix the
location of the simple pole to some x, then we find that the possible functions are spanned by
{F (z, x), H1, · · · , Hh−1}, so the space of quasiperiodic meromorphic forms with a single simple
pole is precisely h-dimensional, analogous to the space of periodic holomorphic forms.

In future sections, we will find bases that look like {Fj}hj=1, since the controlled unit residue
of such functions naturally corresponds to a generalization of the Kronecker function. In order
to recover a basis with h− 1 holomorphic functions, one may write

Hj = Fj+1 − Fj ∀ j = 1, · · · , h− 1. (6.14)

The connection between holomorphic forms and quasiperiodic forms will be most clear in
Section 8, as each element of the basis Fj will correspond precisely to ωj .

7 Kronecker forms as ratios of theta functions

7.1 Definition

With the changes done to the conventions made above in Section 5, we should rewrite the genus
one Kronecker form from Equation 4.13 as

F (z, x, α) =
θ(z − x+ α)

θ(z − x)θ(α)
dz(θ(z − p))

∣∣∣∣
p=z

, (7.1)

where z and x are identified on the universal cover, and θ is the unique odd theta function at
genus one. As we generalize to higher genus, the θ function depends on vectors in Ch, which
most naturally corresponds to using the image of z and x under the Abel map u. With this in
mind, we consider the generalization

FD(z, x, α⃗) =
θD(u(z)− u(x) + α⃗)

θD(u(z)− u(x))θD(α⃗)
dz(θD(u(z)− u(p)))

∣∣∣∣
p=z

, (7.2)

where D is a divisor that includes the basepoint of the Abel map (Section 2.4), z, x ∈ M are
points on the manifold, and α⃗ ∈ Ch will serve as powercounting variables13. We will explore

13Technically, one may choose to keep αj as arbitrary commuting variables. This keeps most of the properties,
in particular the residue and quasiperiodicity that we desire from Kronecker form. However, we will find that the
Fay identity relies on having these vectors live in Ch.
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the properties of this Kronecker form, several of which appear only when the divisor is chosen
such that the theta function is odd. As pointed out in Equation 2.14, we will denote the theta
function as θ when the theta function is odd, where we make an arbitrary, but consistent, choice
of characteristics. Similarly, we will denote the corresponding odd Kronecker form by F .

In the upcoming sections, we will use FD when the result applies for any divisor that includes
the basepoint, and F when the result applies only to odd Kronecker forms.

7.2 Properties

7.2.1 Residue and periodicity

When z = x the theta function in the denominator vanishes14, so we reproduce

resz=xFD(z, x, α⃗) = lim
z→x

θD(u(z)− u(x) + α⃗)

(z − x)∂z(θD(u(z)− u(x)))θD(α⃗)
dz(θD(u(z)− u(p)))

∣∣∣∣
p=z

= dz. (7.3)

We also reproduce the quasiperiodicity properties,

FD(z +Bj , x, α⃗) =
exp(2πi(uj(z − x)− αj))θD(u(z)− u(x) + α⃗)

exp(2πiuj(z − x))θD(u(z)− u(x))θD(α⃗)
dz(θD(u(z)− u(p)))

∣∣∣∣
p=z

= exp(−2πiαj)FD(z, x, α⃗) = FD(z, x−Bj , α⃗),
(7.4)

where we can identify wj = exp(−2πiαj).

7.2.2 Fay identity

When working with odd theta functions, we can then use the the Fay trisecant identity [Mum84].
For points a, b, c, d on a genus h compact Riemann surface, and a vector z⃗ ∈ Ch it reads

Θ(z⃗ + u(c)− u(a))Θ(z⃗ + u(d)− u(b))θ(u(c)− u(b))θ(u(a)− u(d))

+Θ(z⃗ + u(c)− u(b))Θ(z⃗ + u(d)− u(a))θ(u(c)− u(a))θ(u(d)− u(b))

=Θ(z⃗ + u(c) + u(d)− u(a)− u(b))Θ(z⃗)θ(u(c)− u(d))θ(u(a)− u(b)),

(7.5)

A calculation, done in Appendix B, reveals that this identity can be transformed into one
that applies to odd Kronecker forms

F (b, a, α⃗)F (d, a, β⃗) = F (b, d, α⃗)F (d, a, α⃗+ β⃗) + F (b, a, α⃗+ β⃗)F (d, b, β⃗) (7.6)

provided that α⃗ ∈ Ch and β⃗ = u(c)− u(d) for some c ∈M.

7.2.3 Expression as ratio of prime forms

If we choose α⃗ = u(y)− u(z) for some y ∈M, one notices that

FE(z, x, y) = F (z, x, u(y)− u(z)) =
E(y, x)

E(z, x)E(y, z)
, (7.7)

14At a glance, it may seem that we have residues at other points since our divisor includes several points, e.g.

by having u(x) = 0 and z ∈ D. However, a careful calculation reveals that the differential dz(θD(u(z)−u(p)))

∣∣∣∣
p=z

vanishes for z ∈ D with u(z) ̸= 0, cancelling the divergent contribution.
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independently of the exact characteristics used for the odd theta functions. Essentially, one
might say that the odd Kronecker forms, as functions of α⃗, agree on a particular submanifold.

However, this identification produces several challenges that restrict its further use. Identify-
ing α⃗ = u(y)−u(z) makes the quasiperiodic factors wj = exp(−2πiαj) dependent on z, reducing
our control over the quasiperiodic behavior. It also restricts our α⃗ to a particular z-dependent
one-dimensional submanifold, which prevents a full expansion as a power series of αj .

7.2.4 Kronecker forms as basis

One expects that Kronecker forms defined using theta functions of different characteristics are
linearly independent. This means that the results of Section 6 should apply, noting that for
theta functions we must have commuting quasiperiodicities, as theta functions do not work with
non-commuting variables.

We can verify that the Kronecker form can be expressed as a series in wj , as in Equation 6.3,
by identifying wj = exp(−2πiαj), and expanding the theta functions containing α⃗.

θ [ ϵ
ϵ′ ] (v⃗ + α⃗) =

∑
n⃗∈Zh

exp(2πi[(nj + ϵj)τjk(nk + ϵk) + (nj + ϵj)(vj + αj + ϵ′j)])

=
∑
n⃗∈Zh

(
h∏

i=1

w−ni−ϵi
i

)
exp(2πi[(nj + ϵj)τjk(nk + ϵk) + (nj + ϵj)(vj + ϵ′j)]),

(7.8)

The terms containing w
−ϵj
j will cancel between the numerator and denominator of the Kro-

necker form, leaving a formula that in principle can give the contributions from each fundamental
domain similarly to Equation 6.3.

It is easy to show numerically that we can choose several theta functions with different odd
characteristics {θi}hi=1, and use the corresponding odd Kronecker forms {Fi}hi=1 defined as ratios
of these theta functions, and then express arbitrary quasiperiodic differentials, such as other
Kronecker forms, in this basis

FD(z, x, α⃗) =

h∑
i=1

ci(x, α⃗)Fi(z, x, α⃗). (7.9)

Unfortunately, the analytical form for these coefficients is not known, and their dependence
on x and α⃗ makes them challenging to work with. One may hope that, if these coefficients are
better understood, that the Fay identities known for odd Kronecker forms may be generalized
to other quasiperiodic forms by expressing them in this basis.

7.2.5 Periodic analogue

Recall that at genus one, we had the periodic analogue of the Kronecker function (Equation 4.27),

Ω(z, α) = exp

(
2πiα

Im(z)

Im(τ)

)
FD(z, α). (7.10)

The natural generalization of this uses the exponential factor, modifying the expression to
use the vectors u(z) and α⃗, as well as using the inverse of the imaginary part, writing

Ω(z, x, α⃗) = exp

2πi
∑
i,j

YijIm(ui(z))αj

FD(z, x, α⃗), (7.11)
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where Y = [Im(τ)]−1 so that∑
i

YijIm(ui(z +Bk)) =
∑
i

YijIm(ui(z)) +
∑
i

[Im(τ)]−1
ij Im[τ ]ik = δjk (7.12)

which allows the exponential in Equation 7.11 to pull out the w−1
j = exp(2πiαj) factor necessary

to restore periodicity.
This periodic analogue precisely matches the periodic analogue at genus one from Equa-

tion 4.27 and has similarities to other periodic approaches at higher genus [DHS23]. However, it
is not explored further in this thesis.

7.2.6 Cyclic products

In [Tsu23, Equation 2.13], Tsuchiya suggests a very similar generalization of the Kronecker
function as

FTsuchiya(z, x, α⃗) =
θ(u(z − x) + α⃗)

E(z, x)θ(α⃗)
(7.13)

albeit his prescription for the characteristics is odd only at genera of the form h = 4n+1, 4n+2.
However, he uses this Kronecker function only as part of a cyclic product with zN+1 = z1

N∏
i=1

FTsuchiya(zi, zi+1, α⃗), (7.14)

where if we expand the definition of the prime form (Equation 2.15),

N∏
i=1

θ(u(zi − zi+1) + α⃗)

θ(u(zi − zi+1))θ(α⃗)
ψ(zi)ψ(zi+1) =

N∏
i=1

θ(u(zi − zi+1) + α⃗)

θ(u(zi − zi+1))θ(α⃗)
ψ(zi)

2 =

N∏
i=1

F (zi, zi+1, α⃗),

(7.15)
we recover the generalization presented here.

7.3 Expansion into kernels

7.3.1 Pole-cancellation

Now, we would like to reproduce an expansion of the Kronecker function into integration kernels
as was done in Equation 4.4. In order to do this, we need to introduce some pole-cancelling
function P (α⃗) to cancel the Kronecker function’s divergence when α⃗ = 0⃗ such that

P (α⃗)F (z, x, α⃗) =
∑

n⃗∈Zh
≥0

g(n⃗)(z, x)

h∏
j=1

α
nj

j . (7.16)

The most obvious pole-cancellation functions mimic the choice P (α) = α at genus one. For

instance, one might choose a product-based pole-cancellation P (α⃗) =
∏h

j=1 αj or sum-based

pole-cancellation P (α⃗) =
∑h

j=1 αj . However, as we had seen in Section 2.4, the divergence of

1/θ(α⃗) extends to a (h−1)-dimensional variety in Ch, so in order to have a consistent expansion
in components of α⃗, we need to cancel the divergence on the entire variety15, such as by using

15Some caution is to be taken with restricting the pole-cancellation functions in this way. It is possible that we
must instead restrict α⃗ to a submanifold in which the divergence is simpler (e.g. α⃗ ∈ {u(y) − u(z) : y ∈ M}).
However, isolating powers in the Fay identity later in this section requires that these expansions are valid for α⃗
on a larger space.
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P (α⃗) = θ(α⃗) directly. This choice in particular gives a very convenient expression for the
integration kernels, since writing

θ(α⃗)F (z, x, α⃗) =
∑

n⃗∈Zh
≥0

g(n⃗)(z, x)

h∏
j=1

α
nj

j =⇒ g(n⃗)(z, x) =
θ(n⃗)(u(z)− u(x))

θ(u(z)− u(x))
dz(θ(u(z)−u(p)))

∣∣∣∣
p=z

(7.17)
The space of possible pole-cancellation functions is explored in Appendix C; however, for the

remainder of the thesis we will stick to using an arbitrary odd pole-cancellation function

P (α⃗) =
∑

n⃗ ∈ Zh
≥0∑h

j=1 nj odd

P (n⃗)
h∏

j=1

α
nj

j , P (α⃗) = −P (−α⃗), (7.18)

where the components P (n⃗) will be used when P itself is expanded in components of α⃗.

7.3.2 Properties of integration kernels

As in the case at genus one (Equation 4.10), we can use the properties of the Kronecker form to
understand the quasiperiodicity and residue of the integration kernels.

F (z +Bj , x, α⃗) = exp(−2πiαj)F (z, x, α⃗) =⇒ g(n⃗)(z +Bj , x) =

nj∑
k=0

(−2πi)kg(n⃗−kδ⃗j)(z, x),

resz=xP (α⃗)F (z, x, α⃗) = P (α⃗)dz =⇒ resz=xg
(n⃗)(z, x) = P (n⃗)dz,

(7.19)

where P (n⃗) is the coefficient of
∏h

j=1 α
nj

j in the expansion of P (Equation 7.18). At genus one,

when P (α) = α, we reproduce that resz=xg
(n)(z, x) = δn1dz.

7.3.3 Fay identity for integration kernels

With this pole-cancellation in mind, we can proceed to analyze the integration kernels. The most
interesting step to take is to attempt to reproduce the procedure by which the Fay identity for
the Kronecker function is expanded to become a Fay identity for the integration kernels, reaching
a result like Equation 4.12.

We can start by multiplying the Fay identity for the Kronecker function (Equation 7.6) by
the corresponding pole-cancellation factors

P (α⃗+ β⃗)[P (α⃗)F (b, a, α⃗)][P (β⃗)F (c, a, β⃗)] =P (β⃗)[P (α⃗)F (b, c, α⃗)][P (α⃗+ β⃗)F (c, a, α⃗+ β⃗)]

+ P (α⃗)[P (α⃗+ β⃗)F (b, a, α⃗+ β⃗)][P (β⃗)F (d, b, β⃗)],
(7.20)

so we can now expand all terms in powers of αj and βj , and group them by powers

∑
m⃗,n⃗∈Zh

≥0

F̃ (m⃗;n⃗)(a, b, c)

 h∏
j=1

α
mj

j β
nj

j

 = 0, (7.21)
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where we keep the coefficients of P , products of kernels g, and combinatoric factors in the term

F̃ (m⃗;n⃗)(a, b, c) =
∑
r⃗ ≤ m⃗

s⃗ ≤ n⃗

∏
j

(
mj + nj − rj − sj

mj − rj

)


g(r⃗)(b, a)g(s⃗)(c, a)P (m⃗+n⃗−r⃗−s⃗)

−g(r⃗)(b, c)P (s⃗)g(m⃗+n⃗−r⃗−s⃗)(c, a)

−P (r⃗)g(s⃗)(c, b)g(m⃗+n⃗−r⃗−s⃗)(b, a)

 .
At this point, the next step at genus one would be to remove the dependence on both α and β,
using derivatives on each variable, and then setting α = β = 0, giving us simply

(∂α)
M (∂β)

N
∑

m,n∈Zh
≥0

F̃ (m;n)(a, b, c) (αmβn) = 0
α=β=0
=⇒ F̃ (M ;N)(a, b, c) = 0 for h = 1, (7.23)

which, after setting P (α) = α, would give us precisely the identity in Equation 4.12. Isolating
the terms corresponding to αMβN in this way was only possible because the Fay identity at
genus one is valid for all α, β ∈ C. However in general we require β⃗ ∈ {u(p)−u(c)|p ∈M}, which
restricts our derivatives to be in a particular one-dimensional submanifold parametrized by d.

Instead, we can only take derivatives with respect to the point p, so we would have

h∏
j=1

(∂α)
Mj

(
d

dp

)N ∑
m,n∈Zh

≥0

F̃ (m;n)(a, b, c)

 h∏
j=1

α
mj

j β
nj

j

 = 0

α=0
=⇒

(
d

dp

)N ∑
n⃗∈Zh

≥0

F̃ (M⃗ ;n⃗)(a, b, c)

 h∏
j=1

β
nj

j

 = 0,

(7.24)

where we can write

d

dp
= ∂p +

h∑
j=1

∂uj(p)

∂p
∂uj(p) = ∂p +

h∑
j=1

ωj(p)∂uj(p). (7.25)

Thus, it is clear that we can only control the sum of weights N , rather than individual weights
n⃗. Furthermore, the partial derivative ∂p can act upon ωj(p) when N > 1, so we will have

contributions for all terms where
∑h

j=1 nj ≤ N ; terms with a higher sum will vanish by setting
p = c ⇐⇒ β = 0. Combining all the combinatoric coefficients resulting from the derivatives,
for which the full calculation is present in Appendix D, we find the unpleasant result∑

n⃗, d⃗ ∈ Zh≥0∑
i

ni ≤ N∑
i

di = N

(
h∏

j=1

∑
p⃗
j ∈ Z

dj
≥0∑

k

p
j
k

= nj∑
k

kp
j
k

= dj

p
j
0 = 0

(N !)(nj !)∏dj

k=1(k!)
pj
k(pjk!)

[ωj(c)
pj
1ω′

j(c)
pj
2 · · · ]

)
× F̃ (m⃗;n⃗)(a, b, c) = 0, (7.26)

for all m⃗ ∈ Zh
≥0, N ∈ Z≥0 where

F̃ (m⃗;n⃗)(a, b, c) =
∑
r⃗ ≤ m⃗
s⃗ ≤ n⃗

∏
j

(
mj + nj − rj − sj

mj − rj

)


g(r⃗)(b, a)g(s⃗)(c, a)P (m⃗+n⃗−r⃗−s⃗)

−g(r⃗)(b, c)P (s⃗)g(m⃗+n⃗−r⃗−s⃗)(c, a)

−P (r⃗)g(s⃗)(c, b)g(m⃗+n⃗−r⃗−s⃗)(b, a)

 , (7.27)

where ωj and ω′
j are the components and derivatives of the components of the holomorphic

differentials in some local chart.

28



8 Kronecker forms on Schottky covers

8.1 Definition

In Equation 4.22, we found a representation of the Kronecker function at genus one as a sum
over the group. With the conventions from Section 5, we can write the genus one Kronecker
form as16

F (z, x, w1|Γ) =
∑
γ∈Γ

d(γz)

γz − x
P1 − x
P1 − γz

W (γ−1) =
∑
γ∈Γ

dz

z − γx
γP1 − γx
γP1 − z

W (γ) (8.1)

whereW : γn1 7→ wn
1 keeps track of the monodromies, and the two expressions are related to each

other by relabeling γ 7→ γ−1 and applying a Moebius transformation to each term to move the
element’s action to the other variables. Often, the second form will be more convenient since it
does not include any elements of the Schottky group acting within our differential.

Generalizing this function to a Kronecker form is straightforward, where we can write

Fj(z, x, w⃗|Γ) =
∑
γ∈Γ

dz

z − γx
γPj − γx
γPj − z

W (γ), (8.2)

where W : γn1
i1
· · · γns

is
7→ wn1

i1
· · ·wns

is
generalizes how the monodromies are kept track of with the

non-commutative wj variables. There is a choice to make on which fixed point is chosen in the
Moebius invariant term. As we will see in later sections, the Kronecker forms corresponding to
different choices of the fixed point are independent, and form a basis satisfying the requirements
given in Section 6.

This expression is very similar to the definition of the holomorphic differential forms from
Equation 3.6, with each term in the sum being Moebius invariant. However, instead of using
both fixed points we control the location of a pole using the variable x, and include the function
W (γ) to keep track of power-counting variables.

8.2 Properties

8.2.1 Residue and quasiperiodicity

It is easy to verify the properties we desire from a Kronecker form,

Fj(γkz, x, w⃗|Γ) = wkFj(z, x, w⃗|Γ),
resz=xFj(γkz, x, w⃗|Γ) = dz,

(8.3)

where the first comes from relabeling the sum to aborb the γk into the generator, and the second
simply isolates the residue from the γ = id term.

Unlike the representation with the theta Kronecker forms, where we had F (z +Bj , x, α⃗) =
F (z, x −Bj , α⃗), the Schottky Kronecker forms do not have a simple symmetry with regards to
quasiperiodicity in their auxiliary variable. A calculation done in Appendix E reveals that we
instead have

Fj(z, γkx, w⃗|Γ) = Fj(z, x, w⃗|Γ) + Fk(z, x, w⃗|Γ)(w−1
k − 1). (8.4)

16Note that we have changed convention from using P ′
1 to using P1. At genus one, the choice to use P ′

1 is often
simpler, since we identify γ1 : z 7→ qz with |q| = | exp(2πiτ)| < 1, but we would like our fixed point to be at
infinity. As a consequence of the genus one Kronecker form being the unique quasiperiodic differential, it turns
out that the choice did not actually matter, and so we will stick with P1 to simplify notation and match the
higher genus conventions.
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8.2.2 Basis of quasiperiodic differentials

By carefully studying the residues at the poles in a disc, we find∮
Ai

Fk(z, x, w⃗|Γ) = −2πiδik
∞∑

n=0

W (γ−n
k ) = 2πi

δik

w−1
k − 1

, (8.5)

which clearly demonstrate the independence of the Kronecker forms Fj . Furthermore, they are
normalized such that the periods

∮
Ai
Fk vanish if i ̸= k. One may choose to include the remaining

factors could in the definition of the Kronecker form, normalizing them such that only the δik
remains, just like the basis of periodic holomorphic forms (Equation 2.2).

8.2.3 Sum as average of lower genus objects

One way to approach evaluation of the Schottky Kronecker form is to identify lower genus objects
in the sum representation. Splitting the fraction in the expression, we find

Fj(z, x, w⃗|Γ) =
∑
γ∈Γ

[
dz

z − γx
− dz

z − γPj

]
W (γ), (8.6)

where we are essentially summing over the genus zero integration kernels. At this point, one
could in principle directly integrate, finding a generating function for length 1 polylogarithms

E(z, x, w⃗|Γ) =
∫ z

z0

Fj(z, x, w⃗|Γ) =
∑
γ∈Γ

log

[
(z − γx)(z0 − γPj)

(z − γPj)(z0 − x)

]
W (γ), (8.7)

generalizing the statement given in [BL11, Section 6.1]. Essentially, using the Schottky cover, we
can see how Kronecker forms at arbitrary genus are simply averages over genus zero integration
kernels, labeled with words corresponding to the elements of the homotopy group.

However, expanding directly at the lowest genus misses the fact that we know the Kronecker
form should have a pole in the power-counting variable, as F (z, α) ∼ 1/α at genus one. This
uncaptured pole leads to difficulties if one tries to directly use the expansion at genus zero. It
is more useful then to try to find a way to reduce the Kronecker form to the well-understood
expressions at genus one. This can be done by splitting elements γ ∈ Γ into γ = γnj γ̃ for γ̃ ∈ Γj\Γ
and n ∈ Z,

Fj(z, x, w⃗|Γ) =
∑

γ̃∈Γj\Γ

∑
n∈Z

W (γ̃−1γ−n
j )

d(γnj γ̃z)

γnj γ̃z − x
P1 − x

P1 − γnj γ̃z
(8.8)

=
∑

γ̃∈Γj\Γ

W (γ̃−1)F (γ̃z, x, wj |Γj), (8.9)

where F (z, x, wj |Γj) is simply the genus one Kronecker form defined on the cover generated by
γj . Analogously to identifying the Kronecker form as a weighted average of genus zero integration
kernels, it is also an average of genus one Kronecker forms. Since we know how to isolate the
pole in the power-counting variable at genus one, this expression will be very useful as we begin
expanding in Section 8.3.

8.2.4 Degeneration limits

One of the procedures we would like to understand for polylogarithms at higher genus are their
limits as the underlying surface degenerates. For example, there is a description of how shrinking
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an A-cycle on a genus one surface allows one to relate string amplitudes between a torus and a
sphere with two punctures, as one may imagine from the geometric interpretation depicted in
Figure 7.

−→ −→

Figure 7: A sketch of the procedure, starting with a torus (left), shrinking
and cutting an A-cycle (middle), and recognizing a sphere with two punctures
(right). The image is inspired by Figure 3 from [BK21].

We may imagine a similar procedure done on a Schottky cover, as we shrink the circles
corresponding to some A-cycle down to their fixed point, as in Figure 8.

−→

Figure 8: An analogous picture to Figure 7, but on a Schottky cover and
going from genus two to genus one. The red A-cycle is shrunk down to a
single point, revealing the Schottky cover for a genus one surface with two
marked points. Note that the shrinking of the cycle leads to punctures at the
fixed points Pi and P

′
i , which do not exactly correspond to the centers of the

circles.

We must then understand what this procedure means for the corresponding Schottky group.
For the concentric Schottky cover at genus one (Figure 6), this process corresponds to taking
τ → i∞, which makes γ : z 7→ 0 = P1 and γ−1

1 7→ ∞ = P ′
1. At higher genera, this procedure

is typically tough to control, since it is not trivial to see how the period matrix should change
when a cycle is cut. However, on the Schottky cover we have a simple prescription, as one may
degenerate the surface on cutting the cycle Aj by asserting that we take the limit such that
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γj : z 7→ Pj and γ−1
j : z 7→ P ′

j , while all other generators remain the same.
Applying this to the Kronecker forms, we find two different results depending on whether

j
?
= k for the cycle cut Aj and the Kronecker form considered Fk.
In the case that j ̸= k, we find that the term γPk−γx vanishes if γ contains any appearances

of γj , since those will map both terms to the same point. As a result, writing Γ̃ for the Schottky
group generated by every generator of Γ except γk, we have

Fk(z, x, w⃗|Γγj→∞) =
∑
γ∈Γ̃

dz

z − γx
γPk − γx
γPk − z

W (γ) = Fk(z, x, {wi}i ̸=j |Γ̃), (8.10)

recovering the corresponding Kronecker form at the reduced genus on the Schottky group corre-
sponding to the degenerated surface.

In the case that j = k, we expect to have a more unconventional result, knowing that the rest
of the Kronecker forms already span the whole basis. Indeed, by splitting γ ∈ Γ into γ̃ ∈ Γ/Γj

and γnj ∀n ∈ Z, and using properties of the fixed points, we find that

Fj(z, x, w⃗|Γγj→∞) =
∑

γ̃∈Γ/Γj

∑
n∈Z

dz

z − γ̃γnj x
γ̃γnj Pj − γ̃γnj x
γ̃γnj Pj − z

W (γ̃γnj )

=

 ∑
γ̃∈Γ/Γj

dz

z − γ̃P ′
j

γ̃Pj − γ̃P ′
j

γ̃Pj − z
W (γ̃)

(∑
n<0

wn
j

)

+
∑

γ̃∈Γ/Γj

dz

z − γ̃x
γ̃Pj − γ̃x
γ̃Pj − z

W (γ̃)

+
∑

γ̃∈Γ/Γj

dz

z − γ̃Pj

γ̃Pj − γ̃Pj

γ̃Pj − z
W (γ̃),

(8.11)

where the first term corresponds to those where n < 0, which turned γnj x 7→ P ′
j , etc. The last

term vanishes because we have the numerator γ̃Pj − γ̃Pj = 0. In the other two terms, we find
that any element γ̃ that contains an appearance of γj will make the numerator similarly vanish,

so we can replace the sum over Γ/Γj with Γ̃. Thus, we have

Fj(z, x, w⃗|Γγj→∞) =

∑
γ̃∈Γ̃

dz

z − γ̃P ′
j

γ̃Pj − γ̃P ′
j

γ̃Pj − z
W (γ̃)

(∑
n<0

wn
j

)

+
∑
γ̃∈Γ̃

dz

z − γ̃x
γ̃Pj − γ̃x
γ̃Pj − z

W (γ̃).

(8.12)

Both of these terms look very much like Kronecker forms themselves, although they both
use a fixed point which is now at the puncture left by the cut cycle. Unfortunately, interpreting
implications of this degeneration limit is beyond the scope of this thesis.

8.3 Expansion into kernels

In order to expand into integration kernels, we must identify wj with an exponential of a power-
counting variable, analogously to how wj = exp(−2πiαj) for the theta function representation.
Following a convention similar to [Enr14,Zer23], we will simply set wj = exp(bj), where the let-
ters bj do not commute and we will identify integration kernels as coefficients of corresponding
words. This choice will make our expressions simpler, and differs from the αj notation only by
a factor of (−2πi)m where the m is the weight of the kernel.
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8.3.1 Lowest order expansion

The first step to expanding the Kronecker form is handling the lowest order term, corresponding
to the term of order O(b−1). The best way to handle this is by starting with the genus one
Kronecker form. From Equation 4.5 we know that17 the weight 0 genus one kernel is 2πiω(z|Γ),
which on the Schottky cover has the expression (Equation 3.6)

ω(z|Γh=1) =
1

2πi

(
1

z − P1
− 1

z − P ′
1

)
dz. (8.13)

By considering the expansion given in Equation 8.9, we can find the lowest order term as an
average of the g(0) kernel at genus one

Fj(z, x, w⃗|Γ) =
∑

γ̃∈Γj\Γ

W (γ̃−1)F (γ̃z, x, wj |Γj)

=
∑

γ̃∈Γj\Γ

[(
1

z − P1
− 1

z − P ′
1

)
dz +O(b0)

]

= 2πiωj(z|Γ)
1

bj
+O(b0),

(8.14)

which is again the holomorphic differential due to the definition in Equation 3.6.

8.3.2 Full expansion

As we find the coefficients corresponding to arbitrary words bi1 · · · bis , we will include a pole-
cancellation factor bj , and write

F (z, x, w⃗|Γ)bj =
∞∑
s=0

h∑
i1,··· ,is=1

2πiωi1···isj(z, x|Γ)bi1 · · · bis =
∑

γ∈Γ/Γj

Fj(γ
−1z, x, wj |Γj)W (γ),

(8.15)
which matches the notation above at lowest order.

In searching for an expression for these ω···j , we will once again turn to the genus one case
to give us control over the pole. This leaves us with a combinatorics problem where we need to
analyze which terms in the series defining the Kronecker form have contributions to the word
bi1 · · · bis , taking into account the coefficients that come out of the exponentials. It is best to
group our word with repeated letters, writing bn1

i1
· · · bns

is
where ik ̸= ik+1. With this in mind,

we can keep track of contributions from elements where γi1 appears m1 ≤ n1 times, followed
by γi2 appearing m2 ≤ n2 times, etc. with any generators appearing in between them that do
not contribute. To avoid double counting for different values of m1, we assert that each of the
generators we have singled out must contribute at least a single letter, so the unit term from the
exponentials should be ignored. As such, the corresponding exponentials are

· · · γi1 · · · γi1︸ ︷︷ ︸
≥m1appearances ofγi1

· · ·
≥msappearances ofγis︷ ︸︸ ︷

γis · · · γis · · · → (ebi1 − 1)m1 · · · (ebis − 1)ms , (8.16)

17One must be careful with the powercounting variables. In Section 4.2.2, we were using w = e−2πiα, and

αF =
∑∞

n=0 α
ng

(n)
α . However, in the current section, we have w = eb, and Fb =

∑∞
n=0 b

ng
(n)
b . Identifying

b = −2πiα, we find g
(0)
b = 2πig

(0)
α . From Equation 4.5, we had g

(0)
α = ω, so in the current language with

expansions in b, we must have the weight 0 kernel be 2πiω.
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from which we must extract the coefficient corresponding to the word bn1
i1
· · · bns

is
. We will write

the collection of elements γ ∈ Γ/Γj of that form as Γ(m⃗), keeping in mind that the same element
may appear multiple times due to the generators appearing in the omitted ‘· · · ’ sections18.

We can solve the simple case of extracting bn from (eb − 1)m, finding

(eb − 1)m =

m∑
k=0

ekb(−1)m−k m!

k!(m− k)!
=

m∑
k=0

∞∑
j=0

(kb)j

j!
(−1)m−k

= · · ·+
( m∑

k=0

knm!(−1)m−k

n!k!(m− k)!

)
bn + · · · ,

(8.17)

where we label C(m,n) =
∑m

k=0
knm!(−1)m−k

n!k!(m−k)! .

Then, the coefficient corresponding to bn1
i1
· · · bns

is
from (ebi1−1)m1 · · · (ebis−1)ms is C(m⃗, n⃗) =∏s

j=1 C(mj , nj). As we apply this result to an explicit formula for ω···j , we also recognize that
the genus one Kronecker form Fj(z, x, wj |Γj) can also contribute letters bj by using higher weight
kernels, which matters if is = j. Putting it all together, we have

ωi1 · · · i1︸ ︷︷ ︸
n1 times

···is · · · is︸ ︷︷ ︸
ns times

j =
1

2πi

δisjns∑
M=0

n1∑
m1=1

· · ·
ns−M∑
ms=1

∑
γ∈Γ(m⃗)

C(m⃗, n⃗−Mδ⃗s)g
(M)
b (γ−1z, x|Γj), (8.18)

giving us an explicit, albeit tedious, expression for higher genus kernels as averages of genus one
kernels on a subcover19.

8.3.3 Relationship to Enriquez’ connection K

With our basis of Kronecker forms, we may combine them into one larger object that contains
all the generated differentials

K̃(z, x) =

h∑
j=1

1

2πi
Fj(z, x, w⃗|Γ)bjaj =

∞∑
s=0

h∑
i1,··· ,is=1

h∑
j=1

ωi1···isj(z, x)bi1 · · · bisaj , (8.19)

where s, the length of the word in b’s, corresponds to the weight of the corresponding coefficient,
which is consistent with ω1 = g(0) at genus one. Note that this object includes factors bj that
cancel the poles in the variable bj that each Fj contains.

Due to the quasiperiodicity and residue of the Kronecker forms (Section 8.2.1), we find that
this one-form satisfies

K̃(γkz, x) = ebkK̃(z, x) ; resz=xK̃(z, x) =

h∑
j=1

bjajdz/2πi, (8.20)

precisely the conditions specified by [EZ21] that uniquely determine the Enriquez’ connection
K, provided that one restricts to one-forms without negative powers of bj

20.

18e.g. Γ(1, 1) includes γ1γ1γ2 twice since it appears as · · · γ1γ2 and as γ1 · · · γ2.
19Where as in Footnote 17, one must be careful to use bF (z, x, w|Γh=1) =

∑∞
n=0 b

ng
(n)
b (z, x), rather than the

form with α. Since b is identified with −2πiα, using (−2πi)n−1g
(n)
b = −g

(n)
α one may reuse existing formulas,

such as the q-expansions presented in Section 4.2.2.
20Without this restriction, the function K = F1

∑h
j=1 bjaj would in principle satisfy the same conditions.

However, F1 = ω1/b1 + · · · so K would include some words with 1/b1 in them.
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We can make a direct connection to the original paper [Enr14] by studying the properties of
the coefficients ω··· directly, finding

K̃(γkz, x) = ebkK̃(z, x) =⇒ ωi1···isj(γkz, x) =

s∑
l=0

δi1···ilkωil+1···isj(z, x)

resz=xK̃(z, x) =

h∑
j=1

bjajdz =⇒ resz=xωi1···isj(γkz, x) = δs1δi1jdz.

(8.21)

As at genus one, the kernels have an additive quasiperiodicity where kernels of lower weight
are added to them, and the only kernels that contain poles are those that are of weight 1. These
results, as well as recognizing ωj(z, x) = ωj(z), match the constraints on ω given by Enriquez
in [Enr14, Lemma 6].

9 Conclusion

9.1 Open questions

9.1.1 Relationship to twisted Green function

The Kronecker form defined as a ratio of theta functions is remarkably similar to the twisted
Green function defined by Enriquez and Felder in [EF00, Equation 11]. To demonstrate the simi-

larity it is useful to define a theta function with a particular shift θEF : v⃗ 7→ Θ(v⃗ − (h− 1)u(P0)− K⃗),

where K⃗ is the vector of Riemann constants21. In particular, since Θ(−u(D)− K⃗) = 0 for divi-
sors of degree h− 1, we find that θEF(⃗0) vanishes at the origin, just like the theta functions used
to construct the Kronecker form defined in Equation 7.2. With these conventions, the twisted
Green function of Enriquez and Felder is

G(z, x, α⃗) =
θEF(u(x− z) + α⃗)

θEF(u(x− z))θEF(α⃗)
dz(θEF(u(z)− u(p)))

∣∣∣∣
p=z

, (9.1)

almost exactly like the Kronecker form up to a few signs. The relationship between these objects
may be explored further to understand how the Kronecker form as a ratio of theta functions is
related to the KZB connection constructed by Enriquez and Felder.

9.1.2 Periodic analogue of the Schottky representation

It may be desirable for some applications to find integration kernels that are completely peri-
odic. This was relatively easy to accomplish in the commutative case with the theta function
representation, since we can readily use exponentials to find quasiperiodic functions

f(z) = exp

2πi
∑
i,j

YijIm(ui(z))αj

 =⇒ f(z +Bj) = exp(2πiαj)f(z), (9.2)

as was done in Section 7.2.5.

21The conventions used in [EF00] differ from those in this thesis, which we defined in Equation 2.19. Instead,

they refer to ∆ = −K⃗. The definition of G(z, x, α⃗) below is modified to use the conventions from this thesis.
Matching the definition from [EF00] requires using Θ(v⃗) = Θ(−v⃗) to invert some of the signs, and identifying w

with x and λ⃗ with −α⃗.
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However, the same strategy cannot be used in the non-commutative case. One must instead
find some function f(z, w⃗|Γ) satisfying f(γkz, w⃗|Γ) = f(z, w⃗|Γ)w−1

k , so that the form,

Ω(z, x, w⃗|Γ) = f(z, w⃗|Γ)F (z, x, w⃗|Γ), (9.3)

satisfies

Ω(γkz, x, w⃗|Γ) = f(γkz, w⃗|Γ)F (γkz, x, w⃗|Γ) = f(z, w⃗|Γ)w−1
k wkF (z, x, w⃗|Γ) = Ω(z, x, w⃗|Γ).

(9.4)
In principle, it is possible to write f(z, w⃗|Γ) =

∑
γ∈Γ f̃(γz)W (γ). However, naive guesses for

a Moebius invariant f̃ like

f̃(z|Γ) = (z − Pi)(Pj − Pk)

(z − Pj)(Pi − Pk)
, (9.5)

will lead to a divergent series since the terms (γPj−γPk) and (γPi−γPk) shrink at approximately
equal rates for elements with a lot of generators.

It may be possible to find an alternative ansatz for a periodicity-restoring factor, or to use a
different starting point using manifestly periodic objects as in [DHS23].

9.1.3 Connection between theta and Schottky representations of Kronecker forms

In order to make a connection between the representations in Section 7 and Section 8, we would
like to be able to either make the representation in terms of theta functions non-commutative,
or make the representation on the Schottky cover commutative.

If we start with the Schottky representation (Equation 8.2), we must find component functions
fn⃗(z) corresponding to f(z|Γ) such that

∑
γ∈Γ

W (γ−1)f(γz) =
∑
n⃗∈Z

( h∏
j=1

w
−nj

j

)
fn⃗(z), (9.6)

where fn⃗(z + Bj , · · · ) = hfn⃗+δ⃗j
(z), for (δ⃗j)i = δij , and W : γn1

i1
· · · γns

is
7→ wn1

i1
· · ·wns

is
. By

matching powers of wj , we find that

fn⃗(z) =
∑
γ ∈ Γ

ordj(γ) = nj ∀i

f(γz), (9.7)

where ordj : γn1
i1
· · · γns

is
7→
∑s

k=1 δjiknk. This restriction to elements containing precisely the
right generators still leaves us with an infinite sum, and makes it difficult to compare the rep-
resentations. Going the other way, from commutative to non-commutative, requires not only
finding fn⃗ corresponding to the theta Kronecker forms (Equation 7.2), but guessing a sum over
these infinite subsets of Γ.

Without finding explicit ways to switch the commutativity of the representations, we may
nonetheless hope to find a connection by expressing one representation as a linear combination of
the other. For example, due to their convenience, we may use the Schottky Kronecker forms as
the basis. Then, imposing wj = exp(−2παj), one would expect that we may write F (z, x, α⃗) =∑h

j=1 cj(x, α⃗)Fj(z, x, w⃗).
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9.1.4 Generalizing Fay identities

Using the representation as a ratio of theta functions, it is clear that at arbitrary genus there
are at least 2h−1(2h − 1) Kronecker forms22 that satisfy Fay identities of the form

F (b, a, α⃗)F (d, a, β⃗) = F (b, d, α⃗)F (d, a, α⃗+ β⃗) + F (b, a, α⃗+ β⃗)F (d, b, β⃗). (9.8)

Though their use for integration kernels is restricted by the requirement that (α⃗, β⃗) = (x⃗, u(c)−
u(d)) for some x ∈ Ch and c ∈M, it is nonetheless important to consider how these Fay identities
may be identified for a larger family of quasiperiodic differential forms.

Working with the Schottky representation, one can actually easily reproduce the Fay identity
at genus one. By working with a concentric Schottky cover where γ1 : z 7→ qz and P1 = ∞, we
have F (z, x, w) =

∑
n∈Z

dz
z−qnxw

−n (Equation 4.17 and [Cha22]) and we find

F (z, x, w)F (z̃, x̃, w̃) =
∑
n∈Z

dz

z − qnx
w−n

∑
ñ∈Z

dz̃

z̃ − qñx̃
w̃−ñ

=
∑
n∈Z

∑
ñ∈Z

(
dz

z − qnx
dz̃/z

z̃/z − qñ−nx̃/x
+ [̃· ↔ ·]

)
w−nw−ñ

= F (z, x, ww̃)F (z̃/z, x̃/x, w) + F (z̃, x̃, ww̃)F (z/z̃, x/x̃, w̃),

(9.9)

precisely like Equation 4.11 by noticing how on the concentric Schottky cover we have u(a/b) =
u(a)−u(b). However, attempting to generalize this to higher genus on the Schottky cover causes
into several issues. The key points of difficulty in the derivation are the fact that fixed points
are no longer invariant under most elements of the Schottky group, and that there isn’t a clear
geometric identification for the difference of the images of Abel maps. Furthermore, the process
of finding a Fay identity is fundamentally challenging with non-commutative monodromy factors,
since one must not only match the quantity of monodromy factors but also their positions within
the words with non-commuting letters.

An alternative approach to generalizing Fay identities relies on better understanding the
way that coefficients must be structured when using the theta Kronecker forms as a basis. In
principle, by writing F̃ (z, x, α⃗) =

∑h
i=1 ci(x, α⃗)Fi(z, x, α⃗) for odd Kronecker forms Fi, one may

be able to expand F̃ F̃ and use the Fay identities for Fi to find a corresponding Fay identity for
the full F̃ .

9.1.5 Representation using modular forms

This thesis did not tackle the question of finding a representation of the Kronecker form using
something analogous to the Eisenstein series and functions (Section 4.2.3). One may consider
working with higher genus analogues of these objects, such as the Siegel modular forms from
[BvdGHZ08]. This representation has an advantage compared to the theta ratio and Schottky
cover since the modular forms manifestly give a prescription for how the Kronecker function, and
the corresponding integration kernels, transform when we transform the period matrix.

By adding A-cycles to B-cycles, or switching the labeling of the two, the modular parameter
at genus one are invariant under τ 7→ τ + 1 and τ 7→ −1/τ , the generators of the SL(2,Z). The
Eisenstein series

ej(τ) =

L∑
m,n ∈ Z

(m,n) ̸= (0, 0)

1

(m+ nτ)j
, (9.10)

22Corresponding to the number of odd theta functions, as mentioned in Section 2.3.1.
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is a modular form with respect to such transformation. This means that for τ ′ = aτ+b
cτ+d , we have

ej(τ
′) = (cτ + d)jej(τ).
Similar transformation properties are true for the period matrix at higher genera using

Sp(2h,Z) at genus h, and with the corresponding modular forms being the aforementioned Siegel
modular forms. Though the precise definition of these modular forms is beyond the scope of this
thesis, it is nonethleess possible to point out a few challenges with them. Unlike the Eisenstein
series above, defined over the entire lattice except the origin, Siegel modular forms are defined
over a particular subgroup of relatively prime matrices. This would be analogous to the notation
at genus one

Gj(τ) =
∑

m,n ∈ Z
(m,n) ̸= (0, 0)

̸ ∃a ̸= 1 s.t. a|m and a|n

1

(m+ nτ)j
, (9.11)

which is related to the Eisenstein series above by identifying

ej(τ) =

L∑
m,n ∈ Z

(m,n) ̸= (0, 0)

1

(m+ nτ)j
=

∞∑
k=1

∑
m,n ∈ Z

(m,n) ̸= (0, 0)

̸ ∃a ̸= 1 s.t. a|m and a|n

1

(km+ knτ)j
=

∞∑
k=1

1

kj
Gj(τ) = ζ(j)Gj(τ). (9.12)

With the difficulties faced with finding an analogue of this conversion for matrices, it becomes
difficult to identify an analogue of the Eisenstein function

Ej(z, τ) = lim
L→∞

L∑
m,n=−L

1

(z +m+ nτ)j
, (9.13)

which takes advantage of the sum over the full lattice to average over shifts of a point z.
One strategy to approach generalizations to higher genus may be studying the relationship

between the Eisenstein function and logarithmic derivatives of the odd theta function [BL11], or
the prime form23, E1(z, τ) = ∂z ln(θ(z)) = ∂z ln(E(z, 0)).

9.1.6 Connections to algebraic curves

An approach to identifying integration kernels for polylogarithms not yet mentioned in this thesis
is the one described in Section 3 of [BDDT18], where integration kernels are defined directly on
the corresponding elliptic curve. Algebraic curves relevant to the study of higher genus Riemann
surfaces can be defined through equations of the form

y2 = P2h+1(x) = (x− a1) · · · (x− a2h+1), (9.14)

where the square on the left hand side produces a set of solutions that lives on two sheets, which
are connected by branch cuts connecting the points ai. The basis of holomorphic differentials on
algebraic curves is [Bob11]

ωj(x, y) =
xj−1dx

y
, (9.15)

23It may be unclear how the derivative of the logarithm of the prime form should act given the half-differentials
it includes. However, the differentiation kills these terms at genus one, leaving only the odd theta function from
the numerator.
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and at genus one, one can identify higher weight kernels, such as the weight 1 kernels24

φ1(x, c) =
1

x− c
dx

y
; φ−1(x, c) =

√
P3(c)

y(x− c)
dx

y
, (9.16)

each of which have simple poles at (x, y) = (c,±
√
P3(c)). These kernels on the algebraic curve,

and their higher weight analogues, are related to linear combinations of the integration kernels
g(n) (defined in Section 4.2).

One may anticipate a similar relationship to exist with the kernels g(n⃗) from the theta Kro-
necker forms, or to the kernels ω···j from the Schottky Kronecker form.

9.2 Summary and outlook

Throughout this thesis, we balanced several approaches to the consideration of functions and
differential forms on Riemann surfaces of genus h.

This started with Section 2.1, where we dealt with compact Riemann surfaces as abstract
spaces with local charts and a structure coming from their homotopy group and holomorphic
differentials. This language, without necessarily referring to specific representations, is sufficient
to define what we mean by Kronecker forms, identifying them by their quasiperiodicity and
residue, as was done in Section 5. In Section 6, we studied the space of quasiperiodic forms,
proving that the space of quasiperiodic forms with a simple pole is of dimenstion h, implying
that there are only h independent Kronecker forms at genus h. In anticipation of this conclusion,
we have uniquely identified the genus one Kronecker function by its quasiperiodicity and residue
in Section 4.2. With this conclusion, we could begin work using specific coordinates on the
Riemann surface to find explicit representations of the bases of Kronecker forms.

The first approach to explicit representations was built upon the Abel map in Section 2.2.
By mapping the manifold to Ch, with the abelianized homotopy group corresponding to a lattice
on the space, we defined theta functions that work naturally with this lattice and studied their
zeros. After seeing how a ratio of odd theta functions defines the Kronecker function at genus one
in Section 4.2.1, we generalized the procedure to arbitrary genus Kronecker forms in Section 7.
These Kronecker forms span the corresponding space by selecting different theta functions for
the ratios and using linear combinations of the results. Aside from satisfying a higher genus Fay
identity, and being related to the generalization suggested by [Tsu23], these Kronecker forms can
be expanded by applying some pole-cancellation functions.

The other approach concerned itself with finding an expression on a Schottky cover, defined
in Section 3. By identifying a suitable finitely-generated subgroup of Moebius transformations,
a higher genus Riemann surface can be identified with B-cycles corresponding to actions of
the generators, and A-cycles to the circles they map to each other. Section 4.2.2 explored how
the second definition at genus one given by [BL11] can be rewritten on a concentric Schottky
cover [Cha22], and imbued with Moebius invariance to work on an arbitrary Schottky cover. In
Section 8, the resulting formula is straightforwardly generalized to higher genera. By selecting
the fixed points corresponding to the generators of the Schottky group for the factor restoring
Moebius invariance, the Kronecker forms on the Schottky cover form a neat, well-normalized
basis for quasiperiodic forms. Working through the combinatorics for the non-commuting power-
counting variables, we can find an explicit expression for the corresponding integration kernels.
By shrinking an A-cycle to a point, the Schottky group degenerates to lower genus, and the
Kronecker forms degenerate directly to a basis of the corresponding surface, with an extra element

24Note that the notation here differs from [BDDT18], since we continue to follow the convention of identifying
kernels directly with the corresponding one-forms. At genus one, this corresponds to multiplying by ω1.
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containing poles at the punctures. Finally, this basis of Schottky Kronecker forms has a direct
relationship with Enriquez’ connection [Enr14,EZ21], as it describe an explicit representation of
the components.

Using these two results, we conclude that the conditions of quasiperiodicity on B-cycles and
unit residue are a suitable starting point for defining kernels for defining polylogarithms. The
representations in terms of theta functions and on the Schottky cover have a key difference in
the commutativity of the power-counting variables, and each has several properties that don’t
seem to be easily spotted in the other representation, such as the Fay identity from the theta
ratio and the degeneration limits from the Schottky sum. It is possible that studying similar
constructions of Kronecker forms using alternative languages, such as on the universal cover with
the Fuchsian group, on an algebraic curve, or using modular forms, we will be able to reproduce
these properties, find new ones, or make room for connections between the commutative and
non-commutative approaches. As higher genus polylogarithms are developed and understood,
one can freely choose a language which contains the most convenient properties, knowing that
they are equivalent to other representations by the unique characterization.
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Appendices

A Combinatorics for the genus one Fay identity

Starting with the Fay identity for the Kronecker function (Equation 4.11), we multiply by
(α)(α̃)(α+ α̃)

(α+ α̃)[αF (z, α)][α̃F (z̃, α̃)] = (A.1)

α[(α+ α̃)F (z, α+ α̃)][α̃F (z̃ − z, α̃)] + α̃[(α+ α̃)F (z̃, α+ α̃)][αF (z − z̃, α)], (A.2)
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which allows us to expand each term in the kernels g

(α+ α̃)

∞∑
j=0

αjg(j)(z)

∞∑
k=0

α̃kg(k)(z̃) = (A.3)

α

∞∑
j=0

(α+ α̃)jg(j)(z)

∞∑
k=0

α̃kg(k)(z̃ − z)+ (A.4)

α̃

∞∑
j=0

(α+ α̃)jg(j)(z̃)

∞∑
k=0

αkg(k)(z − z̃) (A.5)

Isolating the term corresponding to αm+1α̃n, we find

g(m)(z1)g
(n)(z2) + g(m+1)(z1)g

(n−1)(z2) = (A.6)
n∑

j=0

(
m+ j
j

)
g(m+j)(z1)g

(n−j)(z2 − z1)+ (A.7)

m+1∑
j=0

(
n− 1 + j

j

)
g(n−1+j)(z2)g

(m+1−j)(z1 − z2), (A.8)

To demonstrate the next step, we will write the left and right sides of the above equation as
σL(m,n) and σR(m,n) respectively,

σL(m,n) = σR(m,n). (A.9)

Then, we can study the equality

n−1∑
k=0

(−1)kσL(m+ k, n− k) =
n−1∑
k=0

(−1)kσR(m+ k, n− k). (A.10)

For the left side of Equation A.10, we find that this results in a telescoping series, in which
most terms end up cancelling

n−1∑
k=0

(−1)kσL(m+ k, n− k) = (A.11)(
g(m)(z1)g

(n)(z2) +((((((((((
g(m+1)(z1)g

(n−1)(z2)
)

(A.12)

−
(
((((((((((
g(m+1)(z1)g

(n−1)(z2) +((((((((((
g(m+2)(z1)g

(n−2)(z2)
)

(A.13)

+ · · ·+ (−1)m−1
(
((((((((((
g(m+n−1)(z1)g

(1)(z2) + g(m+n)(z1)g
(0)(z2)

)
(A.14)

= g(m)(z1)g
(n)(z2) + (−1)n−1g(m+n)(z1), (A.15)

and the last term is simplified using g(0)(z2) = 1.
Thus, we are able to isolate the g(m)(z1)g

(n)(z2) term as

g(m)(z1)g
(n)(z2) = (−1)ng(m+n)(z1) +

n−1∑
k=0

(−1)kσR(m+ k, n− k). (A.16)
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Studying the right side,

(−1)ng(m+n)(z1) +

n−1∑
k=0

(−1)kσR(m+ k, n− k) = (A.17)

n∑
k=0

(−1)k
n−k∑
j=0

(
m+ j + k

j

)
g(m+j+k)(z1)g

(n−j−k)(z2 − z1)+ (A.18)

n−1∑
k=0

(−1)k
m+k+1∑
j=0

(
n+ j − k − 1

j

)
g(n+j−k−1)(z2)g

(m−j+k+1)(z1 − z2), (A.19)

where we absorbed the extra g(m+n)(z2) term into the sum over k in the second line.
By defining r = j + k, we rearrange the dependencies in line A.18 such that the functions g

can be taken out of one of the sums

n∑
k=0

(−1)k
n−k∑
j=0

(
m+ j + k

j

)
g(m+j+k)(z1)g

(n−j−k)(z2 − z1) = (A.20)

n∑
r=0

g(m+r)(z1)g
(n−r)(z2 − z1)

r∑
j=0

(−1)r−j

(
m+ r
j

)
. (A.21)

The remaining factor can be evaluated explicitly, by noting that

(
A
B

)
=

(
A− 1
B − 1

)
+

(
A− 1
B

)
,

r∑
j=0

(−1)r−j

(
m+ r
j

)
=

r∑
j=0

(−1)r−j

[(
m+ r − 1
j − 1

)
+

(
m+ r − 1

j

)]
=

(
m+ r − 1

r

)
, (A.22)

where the first term was

(
m+ r − 1
−1

)
= 0, intermediate terms were cancelled by the alternating

sum, and the last term survived.
Similarly, for line A.19, we can define r = j − k − 1 such that

n−1∑
k=0

(−1)k
m+k+1∑
j=0

(
n+ j − k − 1

j

)
g(n+j−k−1)(z2)g

(m−j+k+1)(z1 − z2) =

(A.23)

(−1)n−1g(0)(z2)g
(m+n)(z1 − z2)︸ ︷︷ ︸

r=−n,k=n−1,j=0

+

m∑
r=−n+1

g(n+r)(z2)g
(m−r)(z1 − z2)

n+r∑
j=r

(−1)j−r+1

(
n+ r
j

)
.

(A.24)

Again, we can focus on just simplifying the combinatoric sum, starting with j 7→ n+ r − j

n+r−1∑
j=r

(−1)j−r+1

(
n+ r
j

)
=

n−1∑
j=0

(−1)n−j+1

(
n+ r
j

)
=

(
n+ r − 1
n− 1

)
=

(
n+ r − 1

r

)
, (A.25)

where choose functions with negative arguments are 0, restricting our sum over r to only take
non-negative values.
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Thus, combining all the results we find

g(m)(z1)g
(n)(z2) = (−1)n−1g(m+n)(z1 − z2) (A.26)

n∑
r=0

(
m+ r − 1

r

)
g(m+r)(z1)g

(n−r)(z2 − z1) (A.27)

m∑
r=0

(
n+ r − 1

r

)
g(n+r)(z2)g

(m−r)(z1 − z2), (A.28)

as desired.

B Proof of Fay identity at higher genus

A known property of the Theta functions is the Fay trisecant identity [Mum84]. For points
a, b, c, d on a genus h compact Riemann surface, and a vector z⃗ ∈ Ch we find

Θ(z⃗ + u(c)− u(a))Θ(z⃗ + u(d)− u(b))θ(u(c)− u(b))θ(u(a)− u(d))

+Θ(z⃗ + u(c)− u(b))Θ(z⃗ + u(d)− u(a))θ(u(c)− u(a))θ(u(d)− u(b))

=Θ(z⃗ + u(c) + u(d)− u(a)− u(b))Θ(z⃗)θ(u(c)− u(d))θ(u(a)− u(b)),

(B.1)

where Θ is the theta function with no characteristics and θ is an arbitrary odd non-singular theta
function.

Recall that θ(x⃗) = exp(2πi[ϵjτjkϵk/2+ ϵjzj + ϵjϵ
′
j ])Θ(z⃗+ ϵ′/2+ τϵ/2) (Equation 2.10) where

ϵ, ϵ′ are the characteristics of θ, lets us connect theta functions with and without characteristics.
Consequently, relabeling z⃗ = y⃗+ η⃗+ τ ϵ⃗, and cancelling out the identitical exponentials on every
term, we find

θ(y⃗ + u(c)− u(a))θ(y⃗ + u(d)− u(b))θ(u(c)− u(b))θ(u(a)− u(d))

+θ(y⃗ + u(c)− u(b))θ(y⃗ + u(d)− u(a))θ(u(c)− u(a))θ(u(d)− u(b))

=θ(y⃗ + u(c) + u(d)− u(a)− u(b))θ(y⃗)θ(u(c)− u(d))θ(u(a)− u(b)),

(B.2)

where a factor of exp (2k + f(2y⃗ + u(c+ d− a− b))) was divided out.
Now, choosing y⃗ = x⃗− u(c)− u(d) and using the odd theta functions, we find

θ(x⃗+ u(d) + u(a))θ(x⃗+ u(c) + u(b))θ(u(c)− u(b))θ(u(a)− u(d))

+θ(x⃗+ u(d) + u(b))θ(x⃗+ u(c) + u(a))θ(u(c)− u(a))θ(u(d)− u(b))

=θ(x⃗+ u(a) + u(b))θ(x⃗+ u(c) + u(d))θ(u(c)− u(d))θ(u(a)− u(b)).

(B.3)

We can divide through by the theta functions underlined above,

θ(x⃗+ u(d) + u(a))

θ(x⃗+ u(d) + u(b))θ(u(a)− u(b))

θ(u(c)− u(b))

θ(u(d)− u(b))θ(u(c)− u(d))

+
θ(x⃗+ u(c) + u(a))

θ(x⃗+ u(c) + u(b))θ(u(a)− u(b))

θ(u(c)− u(a))

θ(u(a)− u(d))θ(u(c)− u(d))

=
θ(x⃗+ u(a) + u(b))

θ(u(a)− u(d))θ(x⃗+ u(d) + u(b))

θ(x⃗+ u(c) + u(d))

θ(x⃗+ u(c) + u(b))θ(u(d)− u(b))
,

(B.4)
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which can be rewritten as

−K(u(b), u(a),−x⃗− u(d))K(u(d), u(b), u(c))

+K(u(b), u(a),−x⃗− u(c))K(u(d), u(a), u(c))

=K(u(b), u(d),−x⃗− u(c))K(u(d), u(a),−x⃗− u(b)),

(B.5)

where

K(z, x, y) =
θ(y − x)

θ(z − x)θ(y − z)
= −K(z, y, x). (B.6)

Finally, we can rewrite this for the Kronecker function

F (z, x, α⃗) =
θ(u(z)− u(x) + α⃗)

θ(u(z)− u(x))θ(α⃗)

h∑
j=1

∂vj
θ(v)

∣∣
v=0

ωj(z) (B.7)

as
F (b, d, α⃗)F (d, a, β⃗) = F (b, a, α⃗)F (d, a, β⃗ − α⃗)− F (b, a, β⃗)F (d, b, β⃗ − α⃗), (B.8)

provided that (α⃗, β⃗) = (−x⃗− u(c)− u(b),−x⃗− u(b)− u(d)) for some vector x⃗ and point c.

We can also reach a more pleasant form that avoids negatives by relabeling β⃗ 7→ β⃗ + α⃗ so

F (b, a, α⃗)F (d, a, β⃗) = F (b, d, α⃗)F (d, a, α⃗+ β⃗) + F (b, a, α⃗+ β⃗)F (d, b, β⃗) (B.9)

provided that (α⃗, β⃗) = (x⃗, u(c) − u(d)) for some vector x⃗ and point c. One can notice that
this identity is independent of the choice of basepoint for the Abel map, since this either gets
cancelled by differences, or can be absorbed into x⃗.

C Pole-cancellation series

In order to make sure that the pole-cancellation function cancels the entire divergence from
1/θ(α⃗) in the Kronecker function, we can relabel P (α⃗) = P̃ (α⃗)θ(α⃗) so

P̃ (α⃗)θ(α⃗)F (z, x, α⃗) = P̃ (α⃗)
θ(u(z)− u(x) + α⃗)

θ(u(z)− u(x))

h∑
j=1

∂vjθ(v⃗)
∣∣
v⃗=0

ωj(z) =
∑

n⃗∈Zh
≥0

g(n⃗)(z, x)

h∏
j=1

α
nj

j .

(C.1)

Writing σ(z, x) =
∑h

j=1 ∂vjθ(v⃗)
∣∣
v⃗=0

ωj(z)/θ(u(z)− u(x)) for the part containing the normalized

pole, and expanding P̃ and θ as

P̃ (α⃗) =
∑

n⃗∈Zh
≥0

P̃ (n⃗)
h∏

j=1

α
nj

j ; θ(u(z)− u(x) + α⃗) =
∑

n⃗∈Zh
≥0

θ(n⃗)(u(z)− u(x))

h∏
j=1

α
nj

j , (C.2)

we can proceed to directly expanding the pole-cancelled Kronecker function

P̃ (α⃗)θ(α⃗)F (z, x, α⃗) =
∑

m⃗,n⃗∈Zh
≥0

P̃ (m⃗)θ(n⃗)(u(z)− u(x))σ(z, x)

h∏
j=1

α
mj+nj

j , (C.3)

so we recognize

g(n⃗)(z, x) =
∑
k⃗≤n⃗

P̃ (k⃗)θ(n⃗−k⃗)(u(z)− u(x))σ(z, x). (C.4)
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So, we can now choose to select the coefficients P̃ (k⃗) in the expansion of P̃ so as to manifest
the properties we desire in our integration kernels g. With this choice, we may try to make is
to select the residues of the kernels in a convenient way, such as by reducing how many kernels
have residues to have fewer regularizations that need to be done. Since resz=xσ(z, x) = 1, we see
that the residue of the kernels is

resz=xg
(n⃗)(z, x) =

∑
k⃗≤n⃗

P̃ (k⃗)θ(n⃗−k⃗)(⃗0). (C.5)

Since θ refers to the odd theta function, its even coefficients will vanish

n⃗− k⃗ even =⇒ θ(n⃗−k⃗)(⃗0) = 0, (C.6)

so by choosing P̃ to be an even function, we can immediately make the residues for all kernels

with even indices vanish, since they contain terms P̃ (k⃗)θ(n⃗−k⃗) where there is either odd k⃗ or even
n⃗− k⃗.

P̃ (k⃗) = 0 ∀ k⃗ odd =⇒ resz=xg
(n⃗)(z, x) = 0 ∀ n⃗ even (C.7)

We can then proceed to working with the remaining equations for even n⃗. We may fix the
residues, and try to recursively find the necessary coefficients. For example, at genus one, we
can fix resz=xg

(n)(z, x) = δ0n, and then we would find

resz=xg
(1)(z, x) = 1 = P̃ (0)θ(1)(0) =⇒ P̃ (0) = 1/θ(1)(0) (C.8)

resz=xg
(3)(z, x) = 0 = P̃ (2)θ(1)(0) + P̃ (0)θ(3)(0) =⇒ P̃ (2) = − θ(3)(0)

[θ(1)(0)]2
(C.9)

... (C.10)

which are precisely the coefficients of P̃ (α) = α/θ(α), which gives us P (α) = P̃ (α)θ(α) = α, as
we would expect since that is exactly what is used (Equation 4.4).

However, at higher genus, the number of equations we fix grows faster than the number of
coefficients we can use as parameters. For example, considering kernels up to weight 2k + 1, we
will have k2 + k equations

k2+k︷ ︸︸ ︷
g(1,0), g(0,1)︸ ︷︷ ︸

2

; g(3,0), g(2,1), g(1,2), g(0,3)︸ ︷︷ ︸
4

; · · · ; g(2k+1,0), · · · , g(0,2k+1)︸ ︷︷ ︸
2k

(C.11)

but these equations would only depend on coefficients P̃ (k⃗) up to weight 2k, so we will have k2

parameters
k2︷ ︸︸ ︷

P̃ (0,0)︸ ︷︷ ︸
1

; P̃ (2,0), P̃ (1,1), P̃ (0,2)︸ ︷︷ ︸
3

; · · · ; P̃ (2k,0), · · · , P̃ (0,2k)︸ ︷︷ ︸
2k−1

(C.12)

so there will not be a solution to the system unless k of the equations are not fixed25. As k →∞,
we will have an infinite number of unfixed residues, and consequently infinitely many of our

25Technically, this depends on the algebraic independence of the derivatives of the theta function, which is
challenging to show. Their independence for low weights can be seen numerically. Hopefully in further work, or
upon finding a suitable reference, the proof given can be made more precise.
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kernels will have non-vanishing residues. The same argument holds true for higher genera, as we
will find that ‘# of equations’− ‘# of parameters’ ∼ O(kh−1).

Seeing that there will be an infinte number of kernels with non-vanishing residues anyway,
we will stick with the choice P̃ (α⃗) = 1 giving P (α⃗) = θ(α⃗). In this case, we have a simple closed
form for the kernels

g(n⃗)(z, x) = θ(n⃗)(u(z)− u(x))σ(z, x). (C.13)

D Combinatorics for the genus two Fay identity

Before analyzing the specific case involving different components of the Abel map, let us consider
the simpler case where we are dealing only with a function [f(z)]n with (∂z)

d acting on it. We
end up having the d derivatives distributed between n terms, resulting in

(∂z)
d[f(z)]n =

∑
p⃗ ∈ Zn≥0∑
k

pk = n∑
k

kpk = d

C(p⃗)

n∏
k=0

[f (k)(z)]pj (D.1)

where the vector p⃗ determines how the derivatives are distributed, with the kth component
indicating how many powers of f (k) the term contains. The sum of all powers must be n, and
the total number of derivatives must be d, giving the constraints on p in the sum. The coefficient
C(p⃗) contains the combinatoric factors corresponding to the powers pulled down from power
rules, as well as by combining like terms through different ‘paths’ the derivatives take.

Instead of trying to use power rules, all the combinatoric factors can be identified by labeling
all of our derivatives and functions, and considering all combinations in which they may be
assigned. For example, let us write (∂z)

3[f(z)]2 as ∂1∂2∂3f1f2. Then, the term corresponding to
p⃗ = (0, 1, 1) can occur as

(∂1∂2f1)(∂3f2), (∂1∂3f1)(∂2f2), (∂2∂3f1)(∂1f2),

(∂3f1)(∂1∂2f2), (∂2f1)(∂1∂3f2), (∂1f1)(∂2∂3f2),
(D.2)

giving us C̃(0, 1, 1) = 6. If we factor out n! since the order of f ’s does not matter (corresponding
to taking only the first row in Equation D.2), the combinatorics amount to dividing the derivatives
into n groups, where pj of the groups have size j. In the example, this corresponds to

∂1∂2∂3, ∂1∂2∂3, ∂1∂2∂3. (D.3)

The number of ways to make this selection is d!
(
∏d

k=1(k!)
pk )(

∏d
k=1 pk!)

, where d! is the number of

ways to arrange the derivatives, the first term in the quotient ignores the permutations within
the strings, and the second term in the quotient ignores the order of the strings. In total, this
gives us C(p⃗) = n!d!

(
∏d

k=1(k!)
pk )(

∏d
k=1 pk!)

. We correctly see that C(0, 1, 1) = 2!3!
1!2!1!1! = 6, and can

compare to the direct approach where one does

∂3f2 = 2∂2ff ′ = 2∂(f ′)2 + 2∂ff ′′ = 6f ′f ′′ + · · · . (D.4)

Now, we apply this conclusion to terms of the form
(

d
dp

)N (∏h
j=1 fj(p)

nj

)
. Before we may

use p⃗ to decide the number of terms with each order of derivatives, we must choose how many
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derivatives apply for each j. This makes us write

(
d

dp

)N
 h∏

j=1

fj(p)
nj

 =
∑

d⃗ ∈ Zh≥0∑
i

di = N

h∏
j=1

∑
p⃗
j ∈ Z

dj
≥0∑

k

p
j
k

= n∑
k

kp
j
k

= d

C(p⃗j)

n∏
k=0

[f (k)(z)]pj , (D.5)

where d⃗ selects where the derivatives land, and we now have a vector p⃗j for each component.

Now, we apply this conclusion to
(

d
dp

)N ∑
n⃗∈Zh

≥0

(∏h
j=1 fj(p)

nj

)
, so the derivative applies to

each term with n⃗. Finally, we must identify what this means for our original expression

(
d

dp

)N ∑
n⃗∈Zh

≥0

F̃ (M⃗ ;n⃗)(a, b, c)

 h∏
j=1

β
nj

j

 , (D.6)

for βj(p) = uj(p)−uj(c), with us sending p 7→ c at the end. Since βj(c) = 0, we find that the only

terms that survive are those without terms that have no derivatives pj0 = 0. Since we only have
N derivatives, terms with a larger number of powers would necessarily have a term without a
derivative and vanish, so we have

∑h
j=1 nj ≤ N . The remaining terms will contain derivatives of

βj with respect to p, which by the definition of the Abel map must be the functional component

of the corresponding holomorphic differential, so β
(n)
j = ω

(n−1)
j for n ≥ 1.

Putting it all together, we find the expression

∑
n⃗, d⃗ ∈ Zh≥0∑
i

ni ≤ N∑
i

di = N

(
h∏

j=1

∑
p⃗
j ∈ Z

dj
≥0∑

k

p
j
k

= nj∑
k

kp
j
k

= dj

p
j
0 = 0

(N !)(nj !)∏dj

k=1(k!)
pj
k(pjk!)

[ωj(c)
pj
1ω′

j(c)
pj
2 · · · ]

)
× F̃ (m⃗;n⃗)(a, b, c) = 0, (D.7)

as in Equation 7.26.

E Quasiperiodicity in the auxiliary variable on the Schot-
tky cover

We start by expressing the terms in Fj as differences of fractions,

Fj(z, x) =
∑
γ∈Γ

dz

(
1

z − γx
− 1

z − γPj

)
W (γ). (E.1)

As we plug in x 7→ γkx, one may naively assume that one may be able to relabel the sum on
only the first term to absorb the new generator. However, each fraction independently is not
Moebius invariant, and their partial sums are not absolutely convergent, which would make such
a relabeling change the value of the form. Instead, we must insert additional terms to recover

47



Moebius invariant cross-ratios,

Fj(z, γkx) =
∑
γ∈Γ

dz

(
1

z − γγkx
− 1

z − γPj

)
W (γ)

=
∑
γ∈Γ

dz

(
1

z − γγkx
− 1

z − γx
+

1

z − γx
− 1

z − γPj

)
W (γ)

=
∑
γ∈Γ

dz

(
1

z − γγkx
− 1

z − γx

)
W (γ) + Fj(z, x).

(E.2)

Now, we can use a similar strategy to identify the first term on the right hand side,∑
γ∈Γ

dz

(
1

z − γγkx
− 1

z − γx

)
W (γ) =

∑
γ∈Γ

dz

(
1

z − γγkx
− 1

z − γγkPk
− 1

z − γx
+

1

z − γPk

)
W (γ) =

∑
γ∈Γ

dz

(
1

z − γγkx
+

1

z − γγkPk

)
W (γ)− Fk(z, x) = Fk(z, x)(w

−1
k − 1).

(E.3)

Putting together the results, we find

Fj(z, γkx) = Fk(z, x)(w
−1
k − 1) + Fj(z, x), (E.4)

as in Equation 8.4.

F Post-submission corrections

Here I go into a bit of detail on a few points where the original submission fell short.
I would like to thank Prof. Claude Duhr for bringing to my attention the question addressed

in Section F.1, and Sven Stawinski for helping idenfity the key details to resolving it.
I would like to thank Ji Zhexian for bring to my attention the question addressed in Section

F.2, and Egor Im for helping verify the solution.

F.1 Divisor of the theta Kronecker form

In this section, we consider more closely the divisor of the theta Kronecker form. In particular,
one asks if it is indeed true that the theta Kronecker form (Equation 7.2) is defined appropriately
for any choice of pole x. This starts with developing a better understanding of the differential

[ψ(z)]2 = dz(θD(u(z)− u(p)))

∣∣∣∣
p=z

=

h∑
j=1

∂vjθD(v⃗)

∣∣∣∣
v=0⃗

ωj(z), (F.1)

where we use thet notation of ψ(z) from Equation 2.16.

In footnote 14, we suggest that the differential dz(θD(u(z) − u(p)))
∣∣∣
p=z

vanishes for z ∈ D
with u(z) ̸= 0. This is true, and it indeed cancels the spurious poles produced by the theta
function in the denominator of the theta Kronecker form. However, abelian differentials on a
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genus h surface must vanish for a divisor of degree 2h−2 [Ber10, Lemma 4.1.2]. As a result, there
are h− 1 zeros not taken into account, which we will label with the divisor D̃. For an arbitrary
divisor D, it is hard to predict where these remaining zeros end up. However, for an odd theta

function, one finds that the divisor of dz(θD(u(z)−u(p)))
∣∣∣
p=z

is precisely 2D [Ber10, Proposition

6.1.1], so D̃ = D.
When x coincides with one of the zeros in D̃, the differential [ψ(z)]2 cancels the pole that

would have been produced. As a result, for any choice of characteristics there are h − 1 points
where the pole cannot be placed. Furthermore, if we are working with an odd theta function,
we find for x ∈ D̃ = D that

θD(u(z)− u(x)) = −θD(u(x)− u(z)) = 0 ∀z, (F.2)

so the theta function in the denominator identically vanishes and the Kronecker form is ill-
defined. This behavior is related to the special divisors mentioned in Section 2.4.1, since one can
show that theta functions corresponding to a special divisor identically vanish [Ber10, Corollary
5.2.3].

This degeneration of the theta Kronecker form may be related to the challenges relating the
theta Kronecker forms to the Schottky Kronecker forms as in Section 9.1.3. Depending on the
choice of the pole x, a basis of theta Kronecker forms that seemed valid may become degenerate.
One must be careful in translating between the languages to circumvent this issue.

F.2 Formula for Schottky integration kernels

In Section 8.3.2, we gave a starting point for how the integration kernels generated by the Schot-
tky Kronecker form can be calculated as an average over genus one integration kernels. The
approach taken sought to isolate only the generators that could contribute to the words labeling
the integration kernels, and then calculate the corresponding coefficients for each word. However,
this approach leads to a cumbersome expression with a nested definition for the group (Equation
8.18), and misses the contributions that inverse generators may have (Equation 8.16). Here we
present a more simple and efficient approach discovered after the fact, where one directly calcu-
lates coefficients for every element of the Schottky group, excluding non-contributing elements
by finding vanishing coefficients rather than through an involved summation.

As in Section 8.3.2, we will amend our notations to focus on groups with consecutive indices.
We will write our word and our Schottky element in a way that groups repeated entries,

word = bn1
i1
· · · bns

is
(F.3)

γ = γm1
j1
· · · γml

jl
(F.4)

where s and l give us the number of groups, nk > 0 give us the lengths of the groups for the
words, and mk ̸= 0 give us the lengths of the groups for the elements. In particular, one is
allowed to have mk < 0, to account for inverses that appear in the element of the Schottky
group. This notation is made unique by forcing ik ̸= ik+1 and jk ̸= jk+1, so that the groups are
always of the largest size possible, and so that γjγ

−1
j never appears in our element.

We can expand the genus one Kronecker form

F (γ−1z, x, wj |Γj)bj =

∞∑
k=0

bkj g
(k)(γ−1z, x|Γj). (F.5)
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Thus, when finding the coefficient of bn1
i1
· · · bns

is
in W (γ)F (γ−1z, x, wj |Γj)bj , if j = is, some

contributions may come from using higher weight genus one kernels,

ωi1···isj(z, x|Γ)b
n1
i1
· · · bns

is
=

∑
γ∈Γ/Γj

δjisns∑
k=0

W (γ)bkisg
(k)(γ−1z, x). (F.6)

What remains is for us to find the coefficient of bn1
i1
· · · bns

is
inW (γ). We can do this recursively,

writing

C(bn1
i1
· · · bns

is
, γm1

j1
· · · γml

jl
) =


s = 0 : 1 (empty word),

s ̸= 0 = l : 0 (non-empty word, identity element),

i1 ̸= j1 : C(bn1
i1
· · · bns

is
, γm2

j2
· · · γml

jl
) (first letters don’t match),

i1 = j1 :
∑n1

k=0
(m1)

k

k! C(bn1−k
i1

· · · bns
is
, γm2

j2
· · · γml

jl
) (first letters match),

(F.7)
where the recursive definition parses one group of generators at a time, using the base cases for
empty words and elements.

Then, we finally find

ωi1···isj(z, x|Γ) =
∑

γ∈Γ/Γj

δjisns∑
k=0

C(bn1
i1
· · · bns−k

is
, γ)g(k)(γ−1z, x). (F.8)
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