DEPARTMENT of PHYSICS
AND ASTRONOMY

Geometry of non-planar on-shell diagrams

Artyom Lisitsyn
Based on ongoing work with U. Oktem, M. Sherman-Bennett, J. Trnka
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On-shell diagrams

¢ Diagrammatic representation of scattering
amplitudes in ' = 4 SYM

¢ Gluing together of 3-point amplitudes

— White vertex : A\; oc A2 X A3
— Black vertex : A\ o< Ay < A3

e Amplitude is related to an on-shell form
computed by boundary measurements

® The constraints can be encoded in an integral
over G(k,n)

dkxnc 5 y . i
Q= ey (@0 C DITHE ).
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Planar diagrams and corresponding form

pole structure of on-shell form +— boundaries of positive Grassmannian

. 1
(1 k)2 k+1)(n---k—1)
Gi(k,n)={C e Gr(k,n)|(i1---ix) >0Vi; <--- <ig}

2 3
2 3
1 4
5 4
PT(1,2,3,4) = ———~ 1
T (12)(23)(34)(41) PT(1,2,3,4,5) =

(12)(23)(34)(45)(51)
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Combinatorics for MHV diagrams

A counting argument shows that (Arkani-Hamed et al. 2015) 2 3
e There are n — 2 trivalent black vertices
e FEach black vertex connects to three external edges
(through white vertices) 1 4
3 3 4

Every MHV diagram is described by n — 2 triplets

For example, 2

T, = {(1,2,3), (1,3,4)}
Ts = {(13 2»‘3)7 (314a 5)7 (57 6, 1)7 (2747 6)}
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MHYV diagrams and corresponding form

The form can be computed as
1 -
fr= H ( — ) P - 7)8%2(C - N)
iiner \@)GR) (k)
We would like to write this in standard form as fr = fr x 62X4(X - 7)62%2(X- N),

v p

Keeping track of constraints

e 1 N
Gauge-fixing ¢ to match A throughout the amalgamation
N (det M,/ (ab))? ~

- ) Gk) (ki =) Pr
I M ier (DGR fr=Y PT()

aeﬁn

(I'll review these formulas in later slides)

4/23



Outline

e Determinantal formula

Theorem on conditions for equivalent forms
Square moves and sphere moves
Factorization of the form

Doublets

® Decomposition formula

— Positive regions
— Triangulation of pseudo-positive geometry
— Theorem about connectedness of result
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Determinantal formula

The matrix C+(a*) has one row per
triplet, with entries (jk) in column 4. 3 4

clan— | 00 (45 (53) (34 0 2 5
(@) = (56) 0 0 0 (61) (15)
0 (46) 0 (62) 0 (24)
For any choice of columns {a, b}, the 1 6
matrix M, is C*(a*) with those columns T ={(1,2,3),(3,4,5),(5,6,1), (2,4, 6)}
removed.
Fo_ (et May/(ab))? ((33)(61)(24) + (34)(15)(46))?
[iymer (@) Gl (kD) — (12)(23)(31)(34)(45)(53)(56) (61)(15) (24)(46)(62)

6/23



Theorem on conditions for equal forms

|
Let T'and 7" be two sets of triplets. The following statements are equivalent:

1. The sets of triplets are related by a sequence of sphere moves.
2. The corresponding forms are equal: fr = fr.

3. The corresponding doublets are the same: D(T') = D(T").
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Square move

1 2 1 2

. 1
f{(1,2,3),(1,3,4)} = f{(2,1,4),(2,3,4)} = W@‘D(Zﬂ)
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Sphere move

Two sets of triplets are related by a sphere move if the union of the two sets gives a
triangulation of a sphere.

e.g. 6-point triangulation of octahedron

J1(1,2,3),(3.4,5),(5,6,1),(2,4,6)} = J{(2,3,4),(4,5.6),(6,1,2),(1,3,5)}

9/23



Doublets

The set of doublets corresponding to a set of triplets is
D(T) ={(4,4) |7 and j appear together in an odd number of triplets in T'}.

T = {(1, 2, 3), (1, 3,4)},
7 D(T) = {(1a2)7(2v3)a(374)’(451)}
1 2
3 4
T = {(1,2 3), (3,4,5)7 (5,6, 1) (2 476)},
> 5 C(1,2),(2,3),(3,1), (3,4), (4,5), (5,4)
bT) = { (5,6). (6, 1), (1,5), (2.4), (4,6), (6,2>}
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Factorization
|

Suppose R C T is a subset of triplets that itself corresponds to some diagram, and has at
least one index not present elsewhere in 7.
With {a1,--- ,a,} as the indices R shares with T'\ R,

fr = fr x fr\ryup x H(aiai+1)a
=1

where P = {(alv az, a3)7 (ala as, a4)7 T (ala Ar—1, a'T)}'
A diagram without such a subset R is called irreducible.

2 = x 2 x (13)(31)
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Factorization

|
Suppose R C T is a subset of triplets that itself corresponds to some diagram, and has at
least one index not present elsewhere in 7.
With {a4,- - ,a,} as the indices R shares with T'\ R,

fT = fR X f(T\R)uP X H(aiai-l-l)a
=1

where P = {(a1,as,a3), (a1, as,a4)," -, (a1,a,_1,a,)}.
A diagram without such a subset R is called irreducible.

Sketch of proof: Choosing the columns {a, b} in the determinantal formula to be in R, the
matrix is block triangular

MR, ap 0

det(Mr,qp) = det <
( ) M\R)|cp.ab M(T\R)|¢n

) = det(Mp,qp) X det(M(T\R)uP,ij) x ()
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Theorem on conditions for equal forms

Let T and 7" be two sets of triplets. The following statements are equivalent:
1. The sets of triplets are related by a sequence of sphere moves.
2. The corresponding forms are equal: fr = fr.
3. The corresponding doublets are the same: D(T) = D(T").

Sketch of proof:

(1) = (2) known from determinantal formula

(Cachazo et al. 2019; Castravet and Tevelev 2013)

(2) = (3) is true for irreducible diagrams, and thus true for all through factorization

(3) = (1) can be checked by studying the Euler characteristic of the manifold with triplets

as faces and doublets as edges
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Decomposition formula

fT — Z PT(U) = Z (0.102)‘.1.(0%0'1)’

€S, oESy

where S, is the set of permutations up to cyclic shifts such that each triplet is ordered.
e.g. T =1{(1,2,3),(1,3,4),(1,3,5)} — S, = {12345,12354}

- 1 1 3 (31)
I = ) @) BHE) (L) | (12)(23)(35) (4)A1)  (35)(51)(12)(23) (34) (1)
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Positive regions

Let us define a positive region with ¢; = £1 and {ay,--- ,a,} = {1,--- ,n}
PR(alal, s ,8nan) = {C S GR(Z,TL) |€¢6j(a7;aj) > 0}
e.g. G4(2,n) = PR(+1,--- ,+n).

Twisted cyclicity:
PR(al, s ,an) = PR(_ana Ay, 7an*1)

Each equivalence class has a unique representative written as PR(1,---).
Codim-1 connectedness:

PR(--- i j?"'>|(z‘j):0 = PR(--- 7jai7"')}(ij):0

Canonical form: The canonical form of PR(+ay,--- ,+a,)is PT (a1, -+ ,an).
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Pseudo-positive geometry
for non-planar MHV diagrams

|
The on-shell form for an MHV diagram with triplets T" is a canonical form of the
pseudo-positive geometries defined by

G= U PR(EU,lo'la"' aga,na'n)a

aES‘n

for arbitrary choices of ¢, ;.
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Choices for orientations : 4-point example

1 4
T=1{(1,2,3),(1,3,4)} — G =PR(1,2,3,4) = G,(2,4)
T=1{(1,2,3),(1,4,3)}) — G =PR(1,2,4,3)U PR(1,4,2,3)

fr=PT(1,2,3,4) = —[PT(1,2,4,3) + PT(1,4,2,3)] = — f¢
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5-point example

3 4
T=1{(1,2,3),(1,3,4),(1,3,5)} — G = PR(1,2,3,4,5) U PR(1,2,3,5,4)

columns 1,2,3 vanish,
1

PR(1345) ™\ PR(123s4)

i
i
i

(45) vaniches 17/23



6-point example

1 6
T ={(1,2,3),(3,4,5),(5,6,1),(2,6,4)} — G = PR(1,4,2,5,3,6) U PR(1,4,2,5,6,3)
U PR(1,4,5,2,3,6) U PR(1,4,5,2,6,3)
U PR(1,2,5,3,6,—4) U PR(1,2,5,6,3, —4)
U PR(1,5,2,3,6,—4) U PR(1,5,2,6,3, —4).

18/23



7-point example

T=1{(1,2,3),(4,5,6),(1,7,4),(2,7,5),(3,7,6)}

G = PR(1,2,3,7,4,5,—6) U PR(1,6,2,3,7,4, —5) U PR(1,2,6,3,7,4, —5) U PR(1,5,6,2,3,7,4) U PR(1,5,2,6,3,7, 4)
U PR(1,2,3,7,5,6,4)
U PR(1,2,3,7,6,4,—5) U PR(1,5,2,3,7,6,4)
U PR(1,2,7,4,5,6,3)
U PR(1,2,7,5,6,3,4) U PR(1,2,7,5,6,4,3)
U PR(1,2,7,6,3,4,—5) U PR(1,2,7,6,4,3,—5) U PR(1,5,2,7,6,3,4) U PR(1,2,7,6,4,5,3) U PR(1,5,2,7,6,4,3)
U PR(1,7,4,5,2,6,3) U PR(1,7,4,5,6,2,3)
U PR(1,7,5,2,6,3,4) U PR(1,7,5,2,6,4,3) U PR(1,7,5,6,2,3,4) U PR(1,7,5,6,2,4,3) U PR(1,7,5,6,4,2,3)
U PR(1,7,6,4,5,2,3)
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Theorem on connectedness
for internally planar diagrams

For any internally planar diagram, there exists an associated codim-1 connected geometry.
This geometry is identified with the orientation of triplets induced by a planar embedding of
the graph’s internal edges.

e.g. for 6-point graph the connected decomposition can be found by reading the black
vertices counterclockwise

©)

T ={(1,2,3),(3,4,5),(5,6,1),(2,6,4)}
S, = {142536, 142563, 145236, 145263,

Ce¥ 125364, 125634, 152364, 152634}
®
&)
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Sketch of proof

T ={(1,2,3),(3,4,5),(5,6,1),(2,6,4)}
S, = {142536, 142563, 145236, 145263,
125364, 125634, 152364, 152634}

Goal: Show that the regions are connected by swapping adjacent indices.
Step 1: Divide S, into subsets in which triplets have defined orderings:

{142536, 142563, 145236, 145263} <> {1 <2 < 3,4 <5<3,1 <5< 6,4 <2 < 6},
{125364, 125634, 152364, 152634} +» {1 <2 <3,5<3<4,1<5<6,2 <6 < 4}.

Step 2: Connectedness within each poset by swapping adjacent indices.
067 #1 = F(o67); > (067 1) i1 = 04 AF 01 = valid swap to bring the two closer

Step 3: Connectedness between posets has a bijection to a similar problem for perfect
matchings of planar graphs. That problem is solved by Propp 2002.
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Review & Outlook

e Equivalent on-shell forms are related by sphere moves,
and are characterized by having the same doublets.

® On-shell forms are canonical forms of a large family of pseudo-positive geometries.

* For any internally planar diagram, there exist special geometries that are strongly
connected.

* Are there any more properties that may help single out geometries,
especially for the fully non-planar diagrams?

* What lessons can one learn to apply to beyond MHV?
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