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On-shell diagrams

• Diagrammatic representation of scattering
amplitudes in N = 4 SYM

• Gluing together of 3-point amplitudes
– White vertex : λ1 ∝ λ2 ∝ λ3
– Black vertex : λ̃1 ∝ λ̃2 ∝ λ̃3

• Amplitude is related to an on-shell form
computed by boundary measurements

• The constraints can be encoded in an integral
over G(k, n)

Ω = dk×nC

vol(GL(k)) f̃(C)δk×4(C · η̃)δk×2(C · λ̃).

1 4

32

1

2

3 4

5

6
1/23



Planar diagrams and corresponding form
pole structure of on-shell form←→ boundaries of positive Grassmannian

f̃(C) = 1
(1 · · · k)(2 · · · k + 1) · · · (n · · · k − 1)

G+(k, n) = {C ∈ GR(k, n) | (i1 · · · ik) > 0∀ i1 < · · · < ik}
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PT (1, 2, 3, 4) = 1
(12)(23)(34)(41)
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PT (1, 2, 3, 4, 5) = 1
(12)(23)(34)(45)(51)
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Combinatorics for MHV diagrams

A counting argument shows that (Arkani-Hamed et al. 2015)
• There are n− 2 trivalent black vertices
• Each black vertex connects to three external edges

(through white vertices)

⇓

Every MHV diagram is described by n− 2 triplets

For example,

T4 = {(1, 2, 3), (1, 3, 4)}
T6 = {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 4, 6)}
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MHV diagrams and corresponding form
The form can be computed as

fT =
∏

(i,j,k)∈T

(
1

(ij)(jk)(ki)

)
δ2×4(C · η̃)δ2×2(C · λ̃)

We would like to write this in standard form as fT = f̃T × δ2×4(λ · η̃)δ2×2(λ · λ̃),

↙ ↘

Gauge-fixing C⊥ to match λ⊥

f̃T = (det Mab/(ab))2∏
(i,j,k)∈T (ij)(jk)(ki)

Keeping track of constraints
throughout the amalgamation

f̃T =
∑

σ∈Ŝn

PT (σ)

(I’ll review these formulas in later slides)
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Outline

• Determinantal formula
– Theorem on conditions for equivalent forms
– Square moves and sphere moves
– Factorization of the form
– Doublets

• Decomposition formula
– Positive regions
– Triangulation of pseudo-positive geometry
– Theorem about connectedness of result
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Determinantal formula
The matrix C⊥(α⃗∗) has one row per
triplet, with entries (jk) in column i.

C⊥(α⃗∗) =


(23) (31) (12) 0 0 0

0 0 (45) (53) (34) 0
(56) 0 0 0 (61) (15)

0 (46) 0 (62) 0 (24)


For any choice of columns {a, b}, the
matrix Mab is C⊥(α⃗∗) with those columns
removed.
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T = {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 4, 6)}

f̃T = (det Mab/(ab))2∏
(i,j,k)∈T (ij)(jk)(ki) = ((53)(61)(24) + (34)(15)(46))2

(12)(23)(31)(34)(45)(53)(56)(61)(15)(24)(46)(62)
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Theorem on conditions for equal forms

Let T and T ′ be two sets of triplets. The following statements are equivalent:

1. The sets of triplets are related by a sequence of sphere moves.

2. The corresponding forms are equal: fT = fT ′ .

3. The corresponding doublets are the same: D(T ) = D(T ′).
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Square move
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34

f{(1,2,3),(1,3,4)} = f{(2,1,4),(2,3,4)} = 1
(12)(23)(34)(41)
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Sphere move
Two sets of triplets are related by a sphere move if the union of the two sets gives a
triangulation of a sphere.

e.g. 6-point triangulation of octahedron
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f{(1,2,3),(3,4,5),(5,6,1),(2,4,6)} = f{(2,3,4),(4,5,6),(6,1,2),(1,3,5)}
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Doublets
The set of doublets corresponding to a set of triplets is

D(T ) = {(i, j) | i and j appear together in an odd number of triplets in T}.
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34

,
T = {(1, 2, 3), (1, 3, 4)},

D(T ) = {(1, 2), (2, 3), (3, 4), (4, 1)}
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,

T = {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 4, 6)},

D(T ) =
{

(1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (5, 4),
(5, 6), (6, 1), (1, 5), (2, 4), (4, 6), (6, 2)

}
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Factorization
Suppose R ⊂ T is a subset of triplets that itself corresponds to some diagram, and has at
least one index not present elsewhere in T .
With {a1, · · · , ar} as the indices R shares with T \R,

f̃T = f̃R × f̃(T \R)∪P ×
r∏

i=1
(aiai+1),

where P = {(a1, a2, a3), (a1, a3, a4), · · · , (a1, ar−1, ar)}.
A diagram without such a subset R is called irreducible.
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1

43

× (13)(31)
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Factorization
Suppose R ⊂ T is a subset of triplets that itself corresponds to some diagram, and has at
least one index not present elsewhere in T .
With {a1, · · · , ar} as the indices R shares with T \R,

f̃T = f̃R × f̃(T \R)∪P ×
r∏

i=1
(aiai+1),

where P = {(a1, a2, a3), (a1, a3, a4), · · · , (a1, ar−1, ar)}.
A diagram without such a subset R is called irreducible.

Sketch of proof: Choosing the columns {a, b} in the determinantal formula to be in R, the
matrix is block triangular

det(MT,ab) = det
(

MR,ab 0
M(T \R)|∈R,ab M(T \R)|̸∈R

)
= det(MR,ab)× det

(
M(T \R)∪P,ij

)
× (· · · )
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Theorem on conditions for equal forms

Let T and T ′ be two sets of triplets. The following statements are equivalent:

1. The sets of triplets are related by a sequence of sphere moves.

2. The corresponding forms are equal: fT = fT ′ .

3. The corresponding doublets are the same: D(T ) = D(T ′).

Sketch of proof:
(1) =⇒ (2) known from determinantal formula
(Cachazo et al. 2019; Castravet and Tevelev 2013)
(2) =⇒ (3) is true for irreducible diagrams, and thus true for all through factorization
(3) =⇒ (1) can be checked by studying the Euler characteristic of the manifold with triplets
as faces and doublets as edges
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Decomposition formula

f̃T =
∑

σ∈Ŝn

PT (σ) =
∑

σ∈Ŝn

1
(σ1σ2) · · · (σnσ1) ,

where Ŝn is the set of permutations up to cyclic shifts such that each triplet is ordered.

e.g. T = {(1, 2, 3), (1, 3, 4), (1, 3, 5)} −→ Ŝn = {12345, 12354}

f̃T = 1
(12)(23)(34)(45)(51) + 1

(12)(23)(35)(54)(41) = (31)
(35)(51)(12)(23)(34)(41) .
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Positive regions
Let us define a positive region with εi = ±1 and {a1, · · · , an} = {1, · · · , n}

PR(ε1a1, · · · , εnan) = {C ∈ GR(2, n) | εiεj(aiaj) > 0}.

e.g. G+(2, n) = PR(+1, · · · , +n).

Twisted cyclicity:
PR(a1, · · · , an) = PR(−an, a1, · · · , an−1)

Each equivalence class has a unique representative written as PR(1, · · · ).

Codim-1 connectedness:

PR(· · · , i, j, · · · )
∣∣
(ij)=0 = PR(· · · , j, i, · · · )

∣∣
(ij)=0

Canonical form: The canonical form of PR(±a1, · · · ,±an) is PT (a1, · · · , an).
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Pseudo-positive geometry
for non-planar MHV diagrams

The on-shell form for an MHV diagram with triplets T is a canonical form of the
pseudo-positive geometries defined by

G =
⋃

σ∈Ŝn

PR(εσ,1σ1, · · · , εσ,nσn),

for arbitrary choices of εσ,i.
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Choices for orientations : 4-point example

1 4

32

T = {(1, 2, 3), (1, 3, 4)} −→ G = PR(1, 2, 3, 4) = G+(2, 4)
T̃ = {(1, 2, 3), (1, 4, 3)} −→ G̃ = PR(1, 2, 4, 3) ∪ PR(1, 4, 2, 3)

fT = PT (1, 2, 3, 4) = −[PT (1, 2, 4, 3) + PT (1, 4, 2, 3)] = −fT̃
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5-point example

2

1 5

43
T = {(1, 2, 3), (1, 3, 4), (1, 3, 5)} −→ G = PR(1, 2, 3, 4, 5) ∪ PR(1, 2, 3, 5, 4)
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6-point example
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T = {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 6, 4)} −→ G = PR(1, 4, 2, 5, 3, 6) ∪ PR(1, 4, 2, 5, 6, 3)
∪ PR(1, 4, 5, 2, 3, 6) ∪ PR(1, 4, 5, 2, 6, 3)
∪ PR(1, 2, 5, 3, 6,−4) ∪ PR(1, 2, 5, 6, 3,−4)
∪ PR(1, 5, 2, 3, 6,−4) ∪ PR(1, 5, 2, 6, 3,−4).
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7-point example

1
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T = {(1, 2, 3), (4, 5, 6), (1, 7, 4), (2, 7, 5), (3, 7, 6)}
G = P R(1, 2, 3, 7, 4, 5, −6) ∪ P R(1, 6, 2, 3, 7, 4, −5) ∪ P R(1, 2, 6, 3, 7, 4, −5) ∪ P R(1, 5, 6, 2, 3, 7, 4) ∪ P R(1, 5, 2, 6, 3, 7, 4)

∪ P R(1, 2, 3, 7, 5, 6, 4)
∪ P R(1, 2, 3, 7, 6, 4, −5) ∪ P R(1, 5, 2, 3, 7, 6, 4)
∪ P R(1, 2, 7, 4, 5, 6, 3)
∪ P R(1, 2, 7, 5, 6, 3, 4) ∪ P R(1, 2, 7, 5, 6, 4, 3)
∪ P R(1, 2, 7, 6, 3, 4, −5) ∪ P R(1, 2, 7, 6, 4, 3, −5) ∪ P R(1, 5, 2, 7, 6, 3, 4) ∪ P R(1, 2, 7, 6, 4, 5, 3) ∪ P R(1, 5, 2, 7, 6, 4, 3)
∪ P R(1, 7, 4, 5, 2, 6, 3) ∪ P R(1, 7, 4, 5, 6, 2, 3)
∪ P R(1, 7, 5, 2, 6, 3, 4) ∪ P R(1, 7, 5, 2, 6, 4, 3) ∪ P R(1, 7, 5, 6, 2, 3, 4) ∪ P R(1, 7, 5, 6, 2, 4, 3) ∪ P R(1, 7, 5, 6, 4, 2, 3)
∪ P R(1, 7, 6, 4, 5, 2, 3)
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Theorem on connectedness
for internally planar diagrams
For any internally planar diagram, there exists an associated codim-1 connected geometry.
This geometry is identified with the orientation of triplets induced by a planar embedding of
the graph’s internal edges.

e.g. for 6-point graph the connected decomposition can be found by reading the black
vertices counterclockwise
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=⇒
T = {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 6, 4)}
Ŝn = {142536, 142563, 145236, 145263,

125364, 125634, 152364, 152634}
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Sketch of proof
T = {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 6, 4)}
Ŝn = {142536, 142563, 145236, 145263,

125364, 125634, 152364, 152634}

Goal: Show that the regions are connected by swapping adjacent indices.
Step 1: Divide Ŝn into subsets in which triplets have defined orderings:

{142536, 142563, 145236, 145263} ↔ {1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 3, 1 ≺ 5 ≺ 6, 4 ≺ 2 ≺ 6},
{125364, 125634, 152364, 152634} ↔ {1 ≺ 2 ≺ 3, 5 ≺ 3 ≺ 4, 1 ≺ 5 ≺ 6, 2 ≺ 6 ≺ 4}.

Step 2: Connectedness within each poset by swapping adjacent indices.

σσ̃−1 ̸= 1 =⇒ ∃(σσ̃−1)i > (σσ̃−1)i+1 =⇒ σi ̸⊀≻ σi+1 =⇒ valid swap to bring the two closer

Step 3: Connectedness between posets has a bijection to a similar problem for perfect
matchings of planar graphs. That problem is solved by Propp 2002.
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Review & Outlook

• Equivalent on-shell forms are related by sphere moves,
and are characterized by having the same doublets.

• On-shell forms are canonical forms of a large family of pseudo-positive geometries.
• For any internally planar diagram, there exist special geometries that are strongly

connected.

• Are there any more properties that may help single out geometries,
especially for the fully non-planar diagrams?

• What lessons can one learn to apply to beyond MHV?
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