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Before using these solutions, make sure you have first made a solid attempt at solving them yourself.
Asking a friend or reaching out to me for a hint will lead to more effective learning, even if it takes longer.
For direct preparation for the final, consider reviewing the DLs, and working through the past finals
available on Canvas first.

A lot of the questions are intended to give an extra challenge, and push just beyond the course. Here
is an outline that roughly describes the concepts and skills:

• 1.1 ‘Glasswork’ Thermal and bond energy, deducing equilibrium state, working with numbers
• 1.2 ‘Substance A in water’ Deducing heats, thermal equilibrium, sketching a three-phase plot
• 2.1 ‘On the slopes’ Kinetic and potential energy, calculating work, converting to heat
• 2.2 ‘Orbiting the sun’ Reading a potential, formulas and derivatives, sketching a potential
• 3.1 ‘Frozen modes’ Relating atomic structure to modes, particle model of thermal energy
• 3.2 ‘Bond energy in a cube’ Finding neighbors, particle model of bond energy
• 4.1 ‘Cycle of constants’ Work & Heat, heat capacities, sketching PV diagram, calculating entropy
• 4.2 ‘Fridge’ Work & Heat, sketching PV and TS diagrams, thinking of entropy
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1 Applying Models to Thermal Phenomena

1. Make new two-phase plots for the 0.5 kg of blue glass and the 2.0 kg of red glass, labeling the
numbers on the axes.
Since the only change from the plot given is the mass of glass, one only needs to modify the
labels on the x-axis for the energy. For the blue glass, we have half the mass, and so half the
energy change; for the red glass, we have double the mass, and so double the energy change.
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Two-phase diagram of 0.5 kg of blue glass
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2. How much energy is added to the blue glass in step (i)? How much energy is added to the red glass?

The values can be read from the graph by looking at differences between points on the x-axis.
For the blue glass, it takes 600 kJ to heat to 1500 K from 300 K. For the red glass, the values are
four times larger, and we need to heat further, so one finds 7400 kJ.

3. What is the temperature and phase of the glass once it reaches thermal equilibrium after mixing?
What type(s) of energy does each glass gain/lose in step (ii)?
The blue and red glass will exchange energy with each other until they reach the same temper-
ature. The blue glass is about to gain bond energy (until it may fully melt), and the red glass is
about to lose thermal energy (until it may reach the melting point).

∆Ebond,blue = 1000 kJ, ∆Ethermal,red = −1000 kJ.

Since the magnitude of the energies is the same, they actually finish their processes together.
Both glasses end up fully melted, but exactly at the melting point 1500 K.
The blue glass gained bond energy, and the red glass lost thermal energy.

4. How long does she need to wait for the glass to cool back down to room temperature in step (iii)?
The total energy gained by the glass is 8000 kJ (600 from blue and 7400 from red), and this
is the energy it has to lose to return to room temperature. Since the glass cools by 1 kJ every
second, it will then take 8000 seconds for this energy to leave the glass, or about 2 hours and
13 minutes.

5. Repeat parts (2-4) for 0.25 kg of blue glass and for 1.0 kg of blue glass.
When there are 0.25 kg of blue glass, it only takes 300 kJ to heat it to 1500 K. The total energy
gained is then 7700 kJ, so it will take 7700 seconds to cool, or about 2 hours and 8 minutes.
Then, when the glass is mixed, we find ∆Ebond,blue = 500 kJ < |∆Ethermal,red| = 1000 kJ, so
the blue glass finished melting before the red glass finishes cooling. Thus, the blue glass will

Question 1.1 ‘Glasswork’
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continue to heat up until they reach the same temperature

∆Eblue = ∆Ebond,blue +∆Ethermal,blue = −∆Ethermal,red.

The specific heat capacity of both types of glass can be found from the plot for 1 kg: cglass =
5
3 kJ/(kg K). Then, we can plug this into the equation to find

500 +mbluecglass(T − 1500) = −mredcglass(T − 1800)

=⇒ 500 +
5

12
(T − 1500) =

10

3
(1800− T )

=⇒
(

5

12
+

10

3

)
T =

5

12
· 1500 + 10

3
· 1800− 500

=⇒ T = 1633.33 K

When there is 1 kg of blue glass, it takes 1200 kJ to heat it to 1500 K. The total energy gained is
then 8600 kJ, so it will take 8600 seconds to cool, or about 2 hours and 23 minutes.
Then, when the glass is mixed, we find∆Ebond,blue = 2000 kJ > |∆Ethermal,red| = 1000 kJ, so the
red glass is finished cooling to the melting point before the blue glass is done melting. At that
point, they will both be at 1500 K, so they have reached a thermal equilibrium, and end up in a
mixed solid-liquid phase.
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The key to this question is recognizing that, since the system is isolated, the amount of energy gained
by the substance A is directly related to the energy lost by the water:

∆Etot = 0 =⇒ ∆EA +∆EH2O = 0 =⇒ ∆EA = −∆EH2O = |∆HH2O∆mH2O|.

We can use this to calculate all the energy differences, and the corresponding heat capacity or heat
of melting.

(a) What is the specific heat of solid A?

∆Esolid A = |∆HH2O∆mH2O|
=⇒ mAcsolid A∆T = |∆HH2O∆mH2O|

=⇒ csolid A =
|∆HH2O∆mH2O|

mA∆T
=

333.5 · 2
50 · 1

kJ/K = 13.34 kJ/(kg K)

(b) What is the heat of melting of A?

∆Emelting A = |∆HH2O∆mH2O|
=⇒ |∆mA∆Hmelting A| = |∆HH2O∆mH2O|

=⇒ ∆Hmelting A =
|∆HH2O∆mH2O|

∆mA
=

333.5 · 2
1

kJ/K = 667 kJ/kg

(c) What is the specific heat of liquid A?

∆Eliquid A = |∆HH2O∆mH2O|
=⇒ mAcliquid A∆T = |∆HH2O∆mH2O|

=⇒ cliquid A =
|∆HH2O∆mH2O|

mA∆T
=

333.5 · 2
50 · 1

kJ/K = 13.34 kJ/(kg K)

(d) How much energy does A absorb if it started as a liquid at T0 = 250 K?

∆Efrom 250 K = |∆HH2O∆mH2O| = 333.5 · 2 kJ = 667 kJ

Question 1.2 ‘Substance A in water’
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(e) Given that gaseous A has a (constant volume) specific heat of 11.12 kJ/(kg K), what is the heat of
vaporization?
For this part, we need to use the result from (d) and recognize that this energy accounts for both
the phase and temperature change.

∆Efrom 250 K = ∆Ebond +∆Eth = |∆Hvaporizing A∆mA|+mAcA∆T

=⇒ ∆Hvaporizing A =
∆Efrom 250 K −mAcA∆T

|∆mA|
=

667− 1 · 11.12 · 23
1

kJ/kg = 411.24 kJ/kg

With all the calculations we have done, including appropriate calculations for intermediate ener-
gies, the three-phase plot for A should be
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Three-phase plot for A

(f) Based on the ratio between the specific heat of solid A and gaseous A, what can you say about the
number of active modes that gaseous A has at 250 K?
Recall that the molar heat capacity of a substance is related to the number of modes as

cmolar =
(# of modes)

2
R.

The relationship between specific heat and molar heat capacity is determined by the molar mass.
Since the solid and gas are both made of A, they have the same molar mass, and so we find

cspecific,gas
cspecific,solid

=
cmolar,gas
cmolar,solid

=
(# of modes in gas A)

(# of modes in solid A)
.

Recalling that solids have 6 modes (3 kinetic and 3 potential modes), one finds

(# of modes in gas A) = (# of modes in solid A)
cspecific,gas
cspecific,solid

= 6 · 11.12
13.34

= 5.00,

so the gas has 5 active modes.
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2 Applying Models to Mechanical Phenomena

A picture corresponding to the question. The velocity of the snowboarder is indicated by the light blue arrow.
Not to scale.

(a) How much work does the lift do by the time the snowboarder is at a height h/2? How much more
work does it take to get the snowboarder to h?
We can calculate the total energy at the three points by considering the kinetic and potential
energies:

Ebottom = Mg(0) +
1

2
M(0)2 = 0,

Emiddle = Mg(h/2) +
1

2
M(vlift)

2,

Etop = Mg(h) +
1

2
M(0)2 = Mgh.

Since there is no heat involved with the lift, we have ∆E = W , so we find

Wfrom bottom to middle = Emiddle − Ebottom = Mg(h/2) +
1

2
M(vlift)

2,

Wfrom middle to top = Etop − Emiddle = Mg(h/2)− 1

2
M(vlift)

2.

Notice that in the amount of work done in the first half is larger than in the second half, since
the snowboarder acquires kinetic energy at the start and loses kinetic energy at the end.

(b) How much energy to the snowboarder have before he goes down the slope? At the bottom of the slope?
At the peak of his jump?
Since the slope (and flying through the air) is frictionless, the energy will be the same at each of
the three points. We already calculated Etop in the first part as Mgh.

(c) Calculate the speed when the snowboarder is moving fastest.
The snowboarder has the highest speed when they have the highest kinetic energy. By conserva-
tion of energy, this must be when they have the lowest potential energy. This occurs at the bottom
of the hill, with PE = 0. Then,

Ebottom = Mgh =
1

2
Mv2 =⇒ v =

√
2gh.

(d) Calculate the height of the snowboarder’s jump.
At the peak of the snowboarder’s jump, they are not moving vertically. As a result, the kinetic
energy is simply

KEpeak =
�

�
��>

0
1

2
Mv2y +

1

2
Mv2x =

1

2
Mv2jump.

Question 2.1 ‘On the slopes’
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Then,

Ejump = Mgh = PE +KE = Mghjump +
1

2
Mv2jump =⇒ hjump = h− 1

2g
v2jump.

(e) How much snow does the snowboarder melt as he comes to a stop after his jump?
Assume the snow is at 0 ◦C, and has a heat of melting of∆Hmelt, and that no energy is lost elsewhere.
Since all the energy went into melting the snow, we have

∆Esnowboard +∆Esnow = 0 =⇒ ∆Esnow = −∆Esnowboard.

Plugging in the formulas we know

∆mmelted snow∆Hmelt = −(0−Mgh) =⇒ ∆mmelted snow =
Mgh

∆Hmelt
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(a) Which term corresponds to the gravitational force?
We know that the gravitational force should be attractive, i.e. it pulls towards smaller values of
r. Since the force goes in the direction of decreasing potential energy, we need to analyze which
of the terms decreases as one goes towards smaller values of r.
Notice that the magnitude of each term increases for smaller radii

rsmall < rlarge =⇒
∣∣∣∣ A

(rsmall)2

∣∣∣∣ > ∣∣∣∣ A

(rlarge)2

∣∣∣∣ , ∣∣∣∣ B

rsmall

∣∣∣∣ > ∣∣∣∣ B

rlarge

∣∣∣∣ .
Then, the term that decreases for smaller r is the one with a minus sign:

− B

rsmall
< − B

rlarge
,

so this is the term corresponding to gravity.
(b) What are the units of A and B?

The units of each term in an equation should be the same. In the equation

PE(r) =
A

r2
− B

r
,

the left hand side (LHS) has units of energy, so the right hand side (RHS) should too.
So, using square brackets [· · · ] to denote the units of some quantity, we have[

A

r2

]
= Energy =⇒ [A] = Energy · Length2 (e.g. J ·m2)

[
B

r

]
= Energy =⇒ [B] = Energy · Length (e.g. J ·m)

(c) For what radius is the potential energy zero?
Setting the potential energy equal to zero, we can solve for the radius

PE(r) = 0 =⇒ A

r2
− B

r
= 0 =⇒ A−Br = 0 =⇒ r =

A

B
.

(d) What value does the potential energy approach for very, very large radii?
For very large radii, the magnitudes of both of the terms A/r2 and B/r become small. Phrased
more rigorously

lim
r→∞

PE(r) = lim
r→∞

(
A

r2
− B

r

)
= 0.

(e) What value does the potential energy approach for very, very small radii?
For very small radii, the magnitudes of both of the terms A/r2 and −B/r become very large,
approaching infinity. However, A/r2 grows much more quickly than −B/r, so the end result is
positive.

lim
r→0+

PE(r) = lim
r→0+

(
A

r2
− B

r

)
= lim

r→0+

(
A−Br

r2

)
= +∞.

(f) For what radius is the force zero?
The force due to a potential is F (r) = −dPE(r)/dr. Applying this to the potential given

F (r) = −dPE(r)

dr
= −

(
−2

A

r3
+

B

r2

)
= 2

A

r3
− B

r2
.

Question 2.2 ‘Orbiting the sun’
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We find as expected that the term corresponding to the gravitational force is negative for an
attractive force.
Solving for when the force is zero, we find

F (r) = 0 =⇒ 2
A

r3
− B

r2
= 0 =⇒ 2A−Br = 0 =⇒ r =

2A

B
.

Note that the force also approaches zero for very large radii.
(g) What is the potential energy when the force is zero?

Simply plugging in the value we got from the previous part,

PE(2A/B) =
A

(2A/B)2
− B

(2A/B)
=

B2

4A
− B2

2A
= −B2

4A
.

(h) Sketch the potential, and draw arrows corresponding to the force.
In order to make drawing it easier, we can choose values of A and B where the x-intercept and
well-depth are both equal to 1; this would be similar to choose σ = ε = 1 for the Lennard-Jones
potential.
The x-intercept is at A/B and the well-depth is B2/4A, so we can choose A = B = 4, and sketch
something like

0 1 2 3 4 5

−1

0

1

2

3

r in units of (B/A)

P
E

in
un

its
of

(B
2
/
4A

)

Note that in the image the behavior for large r is not obvious since it takes very large values
to come close to PE ≃ 0. Gravity acts at much longer ranges than the force caused by the
Lennard-Jones potential.
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3 Applying Particle Models to Matter

(a) Assuming none of the modes are frozen at T = 2000 K, how many atoms does each gas have?
Recall that a monatomic gas has 3 modes (all translational kinetic), so Gas 1 is monatomic.
A linear gas has 3 translational modes and 2 rotational modes, leaving 3(# of atoms) − 5 vibra-
tional kinetic modes, which are each paired with a vibrational potential mode. This gives a total
for 6(# of atoms)− 5 modes for a linear gas, which accounts for both Gas 2 (with 2 atoms) and
Gas 3 (with 3 atoms).
For completeness, for a non-linear gas one would use the same reasoning with 3 rotational modes
to find 6(# of atoms)− 6 modes.

(b) In one mole of particles of gas 2 at 900K, how many have 5 active modes?
At 900 K, gas 2 has 6 active modes per particle on average. Since the kinetic and potential vibra-
tional modes activate together, it is only possible for the gas to be at either 5 or 7 modes.
In order to reach an average of 6, half must have 5 active modes.

(c) At what temperature does every particle in gas 3 have 2 active vibrational modes?
Since gas 3 is linear triatomic, it has 3 translational and 2 rotational kinetic modes. When 2
vibrational modes are active, there are 7 active modes total, which we see is at 300 K from the
graph.

(d) How much thermal energy per mole does each gas have at 2000 K? 500 K?
Using the formula for Eth, we have

Eth,1,molar(2000 K) = R

2
(3)(2000 K) = 24.942 kJ/mol,

Eth,2,molar(2000 K) = R

2
(7)(2000 K) = 58.198 kJ/mol,

Eth,3,molar(2000 K) = R

2
(13)(2000 K) = 108.082 kJ/mol.

For temperatures between 300 K and 1500 K, we can calculate the number of modes for gas 2 and
3 to be precise:

f2(T ) = 5 +
2

1200
(T − 300),

f3(T ) = 7 +
6

1200
(T − 300).

So, at 500 K, the 3 gases have: 3 modes, 16/3 modes, and 8 modes.

Eth,1,molar(500 K) = R

2
(3)(500 K) = 6.236 kJ/mol,

Eth,2,molar(500 K) = R

2

(
16

3

)
(500 K) = 11.085 kJ/mol,

Eth,3,molar(500 K) = R

2
(8)(500 K) = 16.628 kJ/mol.

(e) Suppose 1 mole of gas 1 at 1500 K is mixed with a very large amount of gas 3 at 500 K. How much
heat is exchanged between the two gases as they reach thermal equilibrium?

Question 3.1 ‘Frozen modes’
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Since there is a very large amount of gas 3 at 500 K, that is the temperature at which thermal
equilibrium will be reached. So, we need to calculate the change in thermal energy for one mole
of gas 1 from 1500 K to 500 K:

|Q| = |∆Eth| =
R

2
|∆(fT )| = 3R

2
|(1500− 500)| = 12.471 kJ.

This energy is transfered from the hotter gas to the colder gas.
(f) Suppose 1 mole of gas 3 at 1500 K is mixed with a very large amount of gas 1 at 500 K. How much

heat is exchanged between the two gases as they reach thermal equilibrium?
Since there is a very large amount of gas 1 at 500 K, that is the temperature at which thermal
equilibrium will be reached. So, we need to calculate the change in thermal energy for one mole
of gas 3 from 1500 K to 500 K. Note that this difference will involve using different numbers of
modes:

|Q| = |∆Eth| =
R

2
|∆(fT )| = R

2
|(13 · 1500− 8 · 500)| = 64.433 kJ.

This energy is transfered from the hotter gas to the colder gas.
(g) Suppose 1 mole of gas 3 at 500 K is mixed with 1 mole of gas 2 at 1500 K. What temperature do they

reach for thermal equilibrium?
Assuming a closed system, we need to have∆Eth,2+∆Eth,3 = 0. Calculating each independently
first:

∆Eth,2 =
R

2
(f2(T ) · T − 7 · 1500),

∆Eth,3 =
R

2
(f3(T ) · T − 8 · 500).

Then, we turn this into an equation

∆Eth,2 +∆Eth,3 = 0

=⇒ (f2(T ) · T − 7 · 1500) + (f3(T ) · T − 8 · 500) = 0

=⇒ T (f2(T ) + f3(T ))− 14500 = 0

=⇒ T (12 +
1

150
(T − 300))− 14500 = 0

=⇒ 1

150
T 2 + 10T − 14500 = 0

=⇒ T =
−10 +

√
100 + 386.67
2

150

= 905 K,

where one takes the positive solution to the quadratic since the negative solution gives a negative
temperature (unphysical).
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(a) How many atoms are there in a cube of size L = 2? Size L = 3? Arbitrary L?
The number of atoms in a cube of size L is simply L3. So, for L = 2 there are 8 atoms, and for
L = 3 there are 27 atoms.

(b) What value of L do you need to get approximately NA atoms?
Solving L3 = NA, we find L = 3

√
NA = 8.4 · 107.

(c) How many nearest neighbor pairs are there in a cube of size L = 2? Size L = 3? Arbitrary L?
If you take a single row of the cube, there are L atoms in a row, with L− 1 atoms between them.
Lets take only the rows that go in one direction, e.g. all the bonds that go along the x-axis. There
are L2 such rows.
Now, since there are 3 directions, with L2 rows in each direction, with L− 1 bonds in each such
row, there are 3L2(L− 1) bonds in the entire cube.

(d) What is the number of nearest neighbor bonds per atom? What does this value approach for very
large L? Justify this value using the nearest neighbor approximation.
The number of nearest neighbors per atom is

(# number of nearest neighbors)
(# number of atoms) =

3L2(L− 1)

L3

where for very large values of L, we find

lim
L→∞

3L2(L− 1)

L3
= 3.

Since most of the atoms are inside of the cube, they have 6 nearest neighbors. Since each bond
is shared between two atoms, there are 3 nearest neighbor bonds per atom.
The reason we don’t have exactly 3 nearest neighbor bonds per atom is because some of the atoms
on the surface of the cube have fewer bonds.

(e) What is the approximate bond energy in a cube of size L? What is the molar heat of vaporizing such
a cube?
Each bond contributes −ε to the bond energy. (Remember that the bond energy is negative, so
one would need to add heat to break bonds!) So, with approximately 3L3 bonds, we have

Ebond = (−ε)3L3.

When we have NA atoms, we have L3 = NA, so the molar heat of vaporizing this cube is
∆Hmolar = 3εNA.

Question 3.2 ‘Bond energy in a cube’
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My best attempt at drawing a cubic lattice with labeling neighbors of some atom. Consider the atom
marked in gray: the blue atoms are the 6 nearest neighbors, the red atoms are the 12 next-nearest

neighbors, and the green atoms are the 8 next-next-nearest neighbors. On the right, an isolated image
shows a calculation of the distance with right angles marked.

(f) How many next-nearest neighbors do most atoms have? How far are they?
The next-nearest neighbors are those that are two bonds away, labeled red in the above pic-
ture. Counting them, one finds that there are 12 next-nearest neighbors. Using the Pythagorean
theorem, one sees that they are

√
2r0 away.

(g) How many next-next-nearest neighbors do most atoms have? How far are they?
The next-nearest neighbors are those that are two bonds away, labeled green in the above pic-
ture. Counting them, one finds that there are 8 next-nearest neighbors. Using the Pythagorean
theorem, one sees that they are

√
3r0 away.

(h) Recalculate the bond energy in a cube of size L using the next-nearest and next-next-nearest neigh-
bors.
We will need to use the values given for the potential at larger distances: LJ(

√
2r0) = −0.24ε

aand LJ(
√
3r0) = −0.07ε.

For each atom, we have 6 nearest neighbors, 12 next-nearest neighbors, and 8 next-next-nearest
neighbors. Since each bond is shared between two atoms, we must divide these values by two,
and we find the bond energy per atom is

Ebond,per atom = 3LJ(r0) + 6LJ(
√
2r0) + 4LJ(

√
3r0) ≃ −47.2ε.

Multiplying by the number of atoms, we get

Ebond = −4.72εL3,

and for one mole of atoms, Natoms = L3 = NA, we have Ebond,molar = −4.72εNA.
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4 Models of Thermodynamics

(a) Sketch a PV diagram of the process, labeling the relevant values for each of the states.
We are given the volume and temperature before step 1: 1 m3 and 300 K. We can calculate the
pressure using the ideal gas law:

PV = nRT =⇒ P =
nRT

V
=

1 · 8.314 · 300
1

Pa = 2.5 kPa.

Then, after step 1, we’ve double the temperature and kept pressure constant, so the volume must
double. After step 2, we’ve halved the temperature and kept volume constant, so the pressure
must be halved. Then, we return to the first point on a curve with constant temperature, so
P ∝ 1/V gives us an approximate shape.

(b) What is the work and heat corresponding to the constant pressure step?
Work can be calculated using W = −P∆V :

W = −P∆V = −2.5 · 1 kPa ·m3 = −2.5 kJ.

In order to calculate heat, we need to calculate the change in internal energy, for which we use
the formula in terms of the number of modes f :

∆U = ∆Eth =
nR

2
f∆T =

1 · 8.314
2

3(300) J = 3.74 kJ.

So,
Q = ∆U −W = 5.26 kJ.

(c) What is the work and heat corresponding to the constant volume step?
Since the volume does not change, the work is W = 0.
For the heat, we know we returned to the original temperature, so ∆U(step 2) = −∆U(step 1) =
−3.74 kJ. Since there is no work, we must also have that Q = −3.74 kJ.

(d) What is the work for the constant temperature step? Hint: Recall P = nRT
V , W =

∫
PdV , and∫ b

a
1
xdx = ln(b/a).

Question 4.1 ‘Cycle of constants’
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We perform the suggested integral:

W = −
∫ 1 m3

2 m3

PdV = −
∫ 1 m3

2 m3

nRT

V
dV = −nRT ln(1/2) = 1 · 8.314 · 300 · (0.693) = 1.73 kJ,

which is negative as expected, since the volume is decreasing.
(e) What is the heat in the last step?

In the last step, ∆U = ∆Eth = 0, since the temperature does not change. So,

∆U = Q+W = 0 =⇒ Q = −W =⇒ Q = −1.73 kJ.

(f) What is the entropy in each step? For the whole cycle?
Recall that the constant pressure molar heat capacity is

cpm =

(
f

2
+ 1

)
R,

where f is the number of modes per particle. Then, since we have one mole of monatomic
particles,

∆S1 =

(
3

2
+ 1

)
R ln(600/300) = 14.41 J/K.

Recall that the constant pressure molar heat capacity is

cvm =
f

2
R,

where f is the number of modes per particle. Then,

∆S2 =
3

2
R ln(300/600) = −8.64 J/K.

For the constant temperature step,

∆S3 =
Q

T
=

−1730

300
= −5.77 J/K.

The total change in entropy is

∆Stotal = ∆S1 +∆S2 +∆S3 = 0 (due to rounding, one might be slightly off),

as expected since we have completed a cycle and entropy is a state function.
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(a) What is the sign on the work in steps 1 and 3?
In step 1, the fluid expands, i.e. ∆V > 0. Since work is W = −P∆V , we must have W < 0.
By the same reasoning, one finds that W > 0 in step 3.

(b) Explain why expanding adiabatically lowers temperature.
An adiabatic expansion has Q = 0, while ∆V > 0 =⇒ W < 0. Then, we can use the change in
total energy to see that the thermal energy decreased, implying a lowered temperature:

∆U = Q+W = 0 +W < 0 =⇒ ∆Eth = C∆T < 0 =⇒ ∆T < 0.

(c) What is the sign on ∆S in steps 2 and 4?
Since heat is Q =

∫
TdS, when we have Q > 0, we must have ∆S > 0. So, in step 2 we have an

increasing entropy.
By the same reasoning, one finds that the entropy decreases in step 4.

(d) What is the sign on ∆P in steps 2 and 4?
Using the ideal gas law, we have

PV = nRT =⇒ ∆(PV ) = nR∆T.

In steps 2 and 4, there is no work, so volume is held constant, giving us V∆P = nR∆T , so the
pressure changes in the same direction as the temperature.
Thus, in step 2 pressure increases, while in step 4 pressure decreases.

(e) Sketch a PV and a TS diagram for the cycle.

Note that the slopes on the non-vertical lines are not constant. Though it is not required to
remember or necessarily apply, it can be nice to appreciate where the slopes come from:

• In the PV diagram, these slopes correspond to the case where Q = 0, where we have W =
∆Eth. Then, one can set up the differential equation

− PdV =
f

2
nRdT =⇒ −PdV =

f

2
d(PV ) =⇒

(
−1− f

2

)
dV

V
=

dP

P

=⇒
(
1− f

2

)
ln(V ) = ln(P ) + c =⇒ P ∝ V −(1+ f

2 )

Question 4.2 ‘Fridge’
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• In the TS, diagram one can use the formula

∆S = C ln(Tf/Ti) =⇒ Tf = Tie
Sf−Si

C .

You can try plotting these using sample values using a graphing calculator, e.g. on desmos.com,
to verify that the shapes above are correct.

(f) Is the total heat positive or negative?
There are two ways of calculating the sign of the heat.
One way is to find it directly from the TS diagram. The heat is positive when the entropy is
increasing, and negative when the entropy is decreasing. The magnitude of the change in heat is
larger when the temperature is larger, so the magnitude of negative heat from step 4 is greater
than the magnitude of positive heat from step 2. So, the heat is negative.
We can also find it indirectly from the PV diagram by solving for work instead. The positive work
from reducing the volume in step 3 is larger than the negative work of increasing the volume in
step 1. So, the overall work is positive. Since it is a cycle, the total energy should not change,
which means the heat is negative.

(g) How is the sign on the heat related to ∆Sclosed ≥ 0?
When the room and the component exchange heat, we have Qroom = −Qstep 2.

∆Sroom =
Qroom
Troom

=
−Qstep 4
Troom

> 0.

When the fridge and the component exchange heat, we have Qfridge = −Qstep 4.

∆Sfridge =
Qfridge
Tfridge

=
−Qstep 2
Tfridge

< 0.

In order for the total entropy to be ∆S ≥ 0, we must have

∆S = ∆Sroom +∆Sfridge ≥ 0

=⇒
−Qstep 4
Troom

+
−Qstep 2
Tfridge

≥ 0

=⇒
Qstep 4
Troom

+
Qstep 2
Tfridge

≤ 0

=⇒
Tfridge
Troom

Qstep 4 +Qstep 2 ≤ 0

=⇒ (Qstep 4 +Qstep 2) +
(
Tfridge
Troom

− 1

)
Qstep 4 ≤ 0

=⇒ Qtotal ≤
(
1−

Tfridge
Troom

)
Qstep 4 < 0,

where the last step uses that Tfridge < Troom and Qstep 4 < 0.
So the negative total heat was actually required by the increasing entropy. This is related to how
systems in the real world can never be perfectly efficient. In the process of removing some heat
from inside the fridge, the component is forced to dump extra heat out into the room.
This extra energy actually come from the work done in the process: a fridge is a machine that
turns work into the movement of heat, with some extra heat as a byproduct. The heat in the
component is negative because the heat for the rest of the universe is positive with its use.

17


	Applying Models to Thermal Phenomena
	Applying Models to Mechanical Phenomena
	Applying Particle Models to Matter
	Models of Thermodynamics

