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Key�Points

•�Adults�with�SCD�and�
parvovirus�B19�
infection�showed�3�
phenotypes:�
erythroblastopenia,�
BMN,�and�vaso-
occlusive�events.

•�Patients�with�BMN�had�
longer�hospital�stay�but�
no�differences�in�
parvovirus�B19�
genotype�or�diversity�
across�groups.

Parvovirus�B19�infection�can�lead�to�severe�complications�in�patients�with�chronic�
hemolysis.�The�aim�of�this�study�was�to�describe�severe�parvovirus�B19�infections�in�adult�
patients�with�sickle�cell�disease�(SCD).�In�this�multicenter,�retrospective,�observational�
cohort�study,�adult�patients�with�SCD�admitted�to�intensive�care�units�(ICUs)�between�2011�
and�2024�with�acute�parvovirus�B19�infection�were�included.�Unsupervised�analysis�was�
performed�including�clinical�and�biological�characteristics�to�identify�clusters�of�patients�
with�different�outcomes.�Clinical�phenotypes�were�defined�based�on�patient�clustering.�
Parvovirus�B19�genomes�from�ICU�(n�=�15)�and�non-ICU�control�patients�(n�=�15)�admitted�
to�the�hospital�during�the�same�period�were�sequenced�and�compared.�Sixty-one�patients�
(52%�female;�median�age,�29�years�[interquartile�range,�24-38])�from�8�ICUs�in�France�were�
included.�Three�clusters�of�patients�were�identified.�From�these�clusters,�3�groups�of�
patients�with�distinct�clinical�phenotype�were�identified:�erythroblastopenia�(n�=�26),�bone�
marrow�necrosis�(BMN)�and�fat�cerebral�embolism�syndrome�(CFE;�n�=�17),�and�other�
vaso-occlusive�manifestations�(n�=�18).�Length�of�stay�in�the�ICU�and�hospital�was�longer�in�
patients�with�BMN/CFE.�There�was�no�difference�in�parvovirus�B19�genotype�or�NS1�or�
VP1/2�amino�acid�diversity�between�the�groups.�Similar�results�were�observed�between�
patients�who�were�admitted�to�the�ICU�and�those�who�were�not.�ICU�patients�with�SCD�and�
acute�parvovirus�B19�infection�presented�3�clinical�phenotypes�associated�with�different�
initial�severity�and�outcome�but�with�similar�parvovirus�B19�clades�and�amino�acid�
diversity.
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Introduction

Parvovirus�B19�is�an�airborne�virus�that�is�highly�tropic�to�human�
erythroid�progenitor�cells�and�typically�causes�brief�epidemics�or�
can�occasionally�be�transmitted�by�blood�transfusion.�1�Infections�
are�more�common�in�children,�2� and�although�most�cases�are�
asymptomatic,�primary�infection�with�parvovirus�B19�can�lead�to�
severe�complications�in�patients�who�are�immunocompromised�or�
those�undergoing�significant�bone�marrow�regeneration.�Indeed,�
its� tropism� for�erythroid�progenitor�cells�can� lead�to�erythro-
blastopenia�in�individuals�with�chronic�hemolysis.�3

Sickle�cell�disease� (SCD)� is�a�congenital�hemoglobinopathy�
characterized�by�recurrent�vaso-occlusive�and�hemolytic�events.�4�

Chronic�hemolysis,�caused�by�the�fragility�of�red�blood�cells�car-
rying�hemoglobin�S,�is�associated�with�significant�bone�marrow�

regeneration,�which�stabilizes�the�constitutional�anemia�observed�
in�these�patients.�However,�parvovirus�B19�infection,�by�blocking�
the�regeneration�of�erythroid�progenitors,�leads�to�acute�erythro-
blastopenia,� which� has� been� described� in� this� population.�5�

Parvovirus�B19�infection�may�also�be�associated�with�macrophage�
activation�syndrome,�6�bone�marrow�necrosis�(BMN),�7�or�hyper-
hemolysis,�8�although�the�clinical�phenotype�and�outcome�of�severe�
adult�forms�are�poorly�documented,�particularly�in�patients�with�
SCD.�Parvovirus�B19�viremia�has�been�shown�to�be�associated�
with�greater�severity�of� infection.�9� Persistent�viremia� is�more�
common�in�immunocompromised�patients�2�and�has�been�associ-
ated�with�severe�anemia�and�transfusion�support.�Intravenous�
immunoglobulins�may�be�useful�to�reduce�the�duration�of�retic-
ulocytopenia�and�transfusion�requirements�10,11�but�the�evidence�
for�this�intervention�is�weak,�particularly�in�patients�with�SCD.

The�presentation�of�parvovirus�B19�infection�in�patients�with�SCD�

ranges�from�isolated�erythroblastopenia�5�to�a�full-blown�multiorgan�
failure�syndrome,�manifesting�as�BMN.�7�However,�the�distribution�
of�these�manifestations�in�the�intensive�care�setting,�as�well�as�their�
potential�association�with�specific�clinical�phenotypes,�has�not�yet�
been�described.�We�conducted�a�retrospective�multicenter�study�
of�adult�patients�admitted�to� intensive�care�units�(ICUs)�with�
confirmed�parvovirus�B19�infection.�The�primary�objective�of�the�
study�was�to� identify�clinical�phenotypes�and�outcomes.�The�
secondary�objective�of�the�study�was�to�assess�the�association�
between�clinical�severity�and�phenotypes�and�genomic�variability�
of�parvovirus�B19.

Methods
Patients

This�was�a�multicenter�retrospective�observational�cohort�of�adult�
patients�with�SCD�admitted�to�ICUs�in�France,�between�1�January�
2011�and�4�April�2024.�Patients�were�identified�from�medical�
records�and/or�virological�results�from�the�participating�centers’�
laboratories.�They�were�eligible�if�they�were�admitted�to�the�ICU�of
8�participating�centers�(see�detailed�list�in�supplemental�Table�1,�
involving�centers�of�the�French�National�Sickle�Cell�Referral�Centre�
and�the�Groupe�de�Recherche�Respiratoire�en�R !�eanimation Onco-
H !�ematologique) for�an�acute�complication�of�SCD�(initial�diagnosis�
of�SCD�was�made�by�hemoglobin�electrophoresis�interpreted�by�a�
senior�physician)�and�had�a�confirmed�acute�parvovirus�B19�
infection,�defined�by�a�positive�polymerase�chain� reaction�or

positive�immunoglobulin�M�directed�against�parvovirus�B19.�Our�
study�was�approved�by�the�institutional�review�board�of�the�French�
Intensive�Care�Society�(no.�CE�SRLF�23-083).�Data�were�analyzed�
using�R�4.1.0�(R�Foundation�for�Statistical�Computing,�Vienna,�
Austria).�Some�patients�were�included�in�a�previous�analysis�on�
cerebral�fat�embolism.�12

Data�collection

Baseline�characteristics�were�collected�from�medical�records�and�
included:�type�of�hemoglobinopathy,�steady-state�hemoglobin�and�
platelet�counts,�and�history�and� long-term�treatment�of�SCD.�
Admission�severity�and�organ�failures�were�assessed�using�the�
simplified�acute�physiology�score�2�(SAPS2)�and�sequential�organ�
failure�assessment�score.�13,14�Vital�parameters�and�clinical�pre-
sentation�at�the�time�of�ICU�admission�were�recorded,�as�were�
laboratory�findings�(on�admission,�and�worst�values).�ICU�and�
hospital�length�of�stay,�supportive�care,�transfusion�therapy,�and�
hospital�death�were�also�recorded.

Unsupervised�clustering�was�first�performed�to�identify�the�char-
acteristics� that�best�defined� the�population.�Each�cluster�of�
patients�with�similar�characteristics�was�secondarily�evaluated�by�
the�investigators�(S.G.,�N.d.P.,�and�L.-M.C.)�to�determine�whether�a�
specific�parvovirus-associated�clinical�phenotype�could�correlate�
with� these� clusters.� The� clinical� phenotypes� identified� were�
defined�as�follows:�(1)�transient�erythroblastopenia,�defined�as�
severe�isolated�anemia,�with�reticulocytopenia�(<150�V�10�9�/L);�(2)�
BMN,�defined�as�either�medullary�necrosis�on�bone�marrow�

examination,�7�or�cerebral�fat�embolism�(CFE)�syndrome�on�mag-
netic�resonance�imaging�12�;�and�(3)�other�vaso-occlusive�mani-
festations,�including�vaso-occlusive�crisis�(VOC)�or�acute�chest�
syndrome�(ACS).

Virological�analysis

We�conducted�an�in-depth�analysis�of�the�genome�diversity�of�
parvovirus�B19�to�identify�whether�differences�in�viral�genes�could�
explain�the�variability�of�clinical�presentations�(ie,�clinical�severity�
and�phenotypes).

Full-length�parvovirus�B19�genomes�were�sequenced�by�means�of�
next-generation� sequencing.�15� Samples� were� obtained� from�

patients�admitted�in�the�ICU�of�Henri�Mondor�hospital�(n�=�15,�12�
from�whole�blood�and�2�from�bone�marrow)�and�from�control�
patients� (n�=�15)�diagnosed�with�nonsevere�parvovirus�B19�
infection�during�the�study�period.�Briefly,�samples�were�subjected�
to�a�mechanical�(glass�beads),�enzymatic�(proteinase�K),�and�
chemical�(chaotropic�lysis�buffer)�treatment.�Total�nucleic�acid�
extractions�were�then�performed�on�a�QIAsymphony,�using�QIA-
symphony�DSP�DNA�midi�kit�(Qiagen,�Hilden,�Germany).�Mixed�
DNA/RNA�libraries�were�constructed�using�the�viral�surveillance�
panel�version�2�kit,�and�were�sequenced�on�a�NovaSeq�5000�
sequencer� (Illumina).�The� raw�data�were�demultiplexed�using�
BCLConvert�on�a�Dragen�server,�and�Fastq�files�were� then�
analyzed� on� the� BaseSpace� cloud� (Illumina),� using� Dragen�
Microbial�Enrichment�Plus�software,�to�obtain�B19�consensus�
sequences.�These�sequences�were�aligned�using�MAFFT�version�
7.525�(bootstrap,�n�=�1000)�and�phylogenetic�trees�were�con-
structed�using�IqTree�version�2.1.4�(bootstrap,�n�=�10�000;�sub-
stitution�model:�TN�+�F�+�I�+�G4�[whole�genome]�and:�HKY�+�F�+�
G4�[nonstructural�protein�(NS)1/VP1])�and�annotated�with�iTol.
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Phylogenetic�trees�are�diagrams�representing�the�evolutionary�
relationships�between�different�parvovirus�viral�sequences�based�
on�their�genetic�similarities�and�differences.�Contextual�references�
of�genotype�1b,�2,�and�3�were�only�available�for�the�VP1�gene;�
therefore,�1�tree�was�constructed�with�NS1-VP1�sequences�to�
assign�a�genotype�to�each�clinical�ICU�presentation,�and�non-ICU�
sequences�(Figure�3);�and�1�tree�with�near�full-length�sequences�
(supplemental�Figure�3)�was�constructed�to�check�the�sequence�
clustering,�between� ICU� and�non-ICU,�and� the�3�previously�
defined�clinical�phenotypes.

To�explore�the�diversity�of�amino�acids�in�NS1�and�VP1/2�viral�
proteins,�Shannon�entropy�was�calculated�and�compared�between�
ICU� and�non-ICU�protein� sequences,�using�Los�Alamos�HIV�
Shannon�entropy�online�software�(https://www.hiv.lanl.gov/content/�
sequence/ENTROPY/entropy.html).�Statistical�confidence�of�dif-
ferential� entropy� was� evaluated� by� a� randomization� strategy�
(n�=�1000,�with�replacements).�Only�full-length�sequences�without�
gaps�were�retained�(ICU,�n�=�14;�non-ICU,�n�=�9).

Statistics

After�removal�of�variables�with�>30%�of�missing�values,�an�explor-
atory�unsupervised�clustering�analysis�was�achieved�using�both�
quantitative�and�qualitative�variables�in�the�data�set�with�factor�
analysis�of�mixed�data�(FAMD;�see�the�supplemental�Methods).�16�

FAMD�explored�data�with�both�continuous�and�categorical�variables�
using�a�principal�components�method�to�identify�both�differences�
and�similarities�between�individuals�as�well�as�relationships�between

variables.�Variables�with�the�highest�contribution�were�presented�to�
identify�clusters�of�patients�with�similar�characteristics.�A�self-
organized�map�(SOM)�was�then�built�to� identify�patients�with�
similar�features�using�the�Kohonen�self-organized�map�methodol-
ogy�17� using� the�R�package�Numero�18� (see� the�supplemental�
Methods).�Missing�data�were�removed�from�SOM�analysis.

Each�cluster�of�patients�with�similar�characteristics�was�subse-
quently�reviewed�by�the�investigators�(S.G.,�N.d.P.,�and�L.-M.C.)�
and�the�clusters�identified�were�matched�to�previously�described�
clinical�phenotypes.�Continuous�data�were�expressed�as�medians�
[25th�and�75th�percentiles]�and�compared�between�groups�of�
clinical�phenotypes�using�the�Kruskal-Wallis�test�for�independent�
samples.�Categorical�variables,�expressed�as�percentages,�were�
evaluated�using�χ�2�or�Fisher�exact�tests,�as�appropriate.

Results
Between�2011�and�2024,�61�patients�(48%�male;�median�age,�29�
[interquartile�range,�24-38]�years)�from�8�ICUs�in�France�were�
included�(Figure�1).�There�was�a�significant�increase�in�the�annual�
number�of�cases�included�in�2023�and�2024�compared�with�those�
included�between�2011�and�2022.

Identification�of�clusters�of�patients�with�SCD�with�
parvovirus�B19�infection

FAMD�analysis�and�SOMs�were�used� to� identify�clusters�of�
patients.� In� the� FAMD� analysis,� the� proportions� of� variance
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Figure�1.�Time�course�of�ICU�admission�of�patients�with�SCD�and�acute�parvovirus�B19�infection�(n�=�61).�Note�that�the�inclusion�period�ended�in�May�2024.
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retained�by� the�first�3�dimensions�were�16%,�9%,�and�7%,�
respectively.�The�10�variables�with�the�highest�contribution�to�the�
first�2�dimensions�are�shown�in�supplemental�Table�2.

Three�clusters�of�patients�were� identified�according�to�these�
clinical� characteristics� (Figure� 2;� supplemental� Table� 3;�
supplemental�Figures�1�and�2):�on�self-organizing�maps,�patients�
with�similar�characteristics�were�located�by�the�SOM�algorithm�on�
the�maps,�defining�3�clusters.�Cluster�1�consisted�of�patients�with�
SS�genotype,� lower�baseline�hemoglobin� levels,�a�history�of�
alloimmunization� or� delayed� hemolytic� transfusion� reaction�
(DHTR),�chest�and�extrathoracic�pain�on�admission�to�the�ICU,�low�

heart�rate,�respiratory�rate,�and�a�normal�platelet�count�with�low�

lactate� dehydrogenase� (LDH)� level� (Figure� 2;� supplemental�
Table�3);�cluster�2�included�older�patients�with�multiorgan�fail-
ure,�a�high�SAPS2�score,�and�high�LDH�and�creatinine�levels.�They�
had�more�frequent�neurological�manifestations,�acute�cor�pulmo-
nale,�mild�to�severe�acute�respiratory�distress�syndrome,�and�
required�more� frequently�mechanical� ventilation,� inhaled�nitric�
oxide,�and�catecholamines.�They�had�longer�mechanical�ventilation�
duration,�and�ICU�length�of�stay.�Cluster�3�included�patients�with�
highest�baseline�hemoglobin,�less�hydroxyurea�(HU)�and�folate�
treatments,�acute�chest�syndromes�with�more�severe�thoracic�
pain,�lower�ratio�of�peripheral�arterial�oxygen�saturation�to�the�
inspired�fraction�of�oxygen�(SpO�2�/FiO�2�)�but�less�need�for�organ�
support�than�cluster�2,�and�a�lower�SAPS2�score.

These�clusters�and�the�visual�distribution�of�patients�within�the�
SOMs�corroborated�the�3�clinical�phenotypes�previously�found�in�
patients�with�SCD�with�a�diagnosis�of�parvovirus�B19�infection�
(Figure� 2;� supplemental� Figure� 2;� supplemental� Table� 3),�
including:�erythroblastopenia�without�crisis�(phenotype�1,�corre-
sponding�to�patients�from�cluster�1);�BMN�and�fat�embolism�

syndrome�(phenotype�2,�corresponding�to�patients�from�cluster�2);�
and�patients�with�other�vaso-occlusive�manifestations�(phenotype�
3,�corresponding�to�patients�from�cluster�3).

Clinical�presentation�and�outcomes�of�patients�
according�to�their�clinical�phenotype�on�admission�to�
the�ICU

Of� 61� patients,� 26� (43%)� had� transient� erythroblastopenia�
(phenotype�1),�17�(28%)�had�a�clinical�presentation�consistent�
with�BMN�or�CFE�(phenotype�2),�and�18�(30%)�had�other�vaso-
occlusive�manifestations�(phenotype�3).�There�were�significant�
differences�regarding�the�demographic�and�clinical�characteristics�
of� these�3�phenotypes� on� admission� to� the� ICU� (Table�1;�
supplemental�Table�5).

Patients�with�erythroblastopenia�(phenotype�1)�included�most�SS�
genotype�(85%),�with�lower�baseline�hemoglobin�count,�more�
frequent� past� history� of�ACS,� and� underlying�HU� treatment�
(Table�1).�Of�note,�>50%�of�these�patients�had�a�previous�history�
of�alloimmunization�or�DHTR,�and�half�had�been�admitted�to�the

ICU�for�treatment�of�acute�anemia.�Fewer�patients�(68%)�received�
a�transfusion�than�in�the�other�groups,�in�line�with�previous�find-
ings.�They�had�a�higher�parvovirus�B19�serum�viral�load�(median,�
8.87� [IQR�7-9.4]� log�copies/mL)�and� lower�hemoglobin�and�
reticulocyte�counts�than�others�(Table�2).�No�patient�died�in�this�
group.

Patients�with�BMN/CFE�(phenotype�2)�had�a�more�frequent�SC�

genotype�(n�=�11,�65%)�and�almost�never�had�an�ACS�episode�
before�the�current�episode�(Table�1).�Most�of�these�patients�were�
also�free�of�underlying�SCD-specific�treatment�other�than�folate�
supplementation.�They�had�the�most�severe�presentation�on�ICU�
admission,�as�indicated�by�the�highest�SAPS2�and�sequential�
organ� failure�assessment�score;� the� lowest�SpO�2�:FiO�2� ratio,�
reflecting�impaired�oxygenation;�and�altered�neurological�status�
(median�Glasgow�coma�scale:�10�[IQR�9-15];�Table�2).�They�had�
lower�platelet�counts�and�higher�LDH�levels�than�their�counter-
parts.�Notably,�77%�of�them�required�invasive�mechanical�venti-
lation�support,�65%�had�mild�to�severe�acute�respiratory�distress�
syndrome,�and�71%�had�shock�associated�with�acute�cor�pul-
monale�(Table�3).�BMN�was�confirmed�by�bone�marrow�examina-
tion�in�80%�of�cases�(n�=�12/15)�and�CFE�by�magnetic�resonance�
imaging�in�92%�of�cases�(n�=�12/13).�All�patients�in�this�group�
received�erythrocyte�transfusion.

Most�patients�with�phenotype�3�(ie,�those�with�vaso-occlusive�
crisis�and�no�erythroblastopenia/no�evidence�of�BMN/CFE)�had�
previous�episodes�of�VOC�and�ACS�(Table�1)�and�had�been�
admitted�to�the�ICU�for�a�vaso-occlusive�event�(either�VOC�or�
ACS).�They�most�commonly� (89%)�presented�with�VOC�on�
admission,�and�67%�of�them�also�had�ACS�(Table�2).�The�pain�
score�was�the�highest,�and�94%�of�patients�had�thrombopenia�
(lowest�platelet�counts:�32�V�10�9�/L�[IQR�24.0-39.5]).�One�third�of�
patients� required� invasive�mechanical� ventilation� or� catechol-
amines�(Table�3).

Therapeutic�interventions�and�outcomes

Specific� therapeutic� interventions� included� intravenous� immuno-
globulins,�given�in�25%�of�patients�(n�=�15),�and�erythropoietin�in�
32%�(n�=�19/60;�Table�3),�with�no�significant�differences�between�
clinical�phenotypes.�No�deaths�were�reported�in�patients�with�eryth-
roblastopenia,�3�(18%)�in�patients�with�BMN/CFE,�and�2�(11%)�in�
patients�with�other�vaso-occlusive�manifestations�(P�=�.1).�ICU�and�
hospital� length�of�stay�was� longer� in�patients�with�BMN/CFE,�
consistent�with�their�more�severe�presentation�of�disease.

Virological�findings
Near�full-length�viral�genome�sequences�were�obtained�for�14�
ICU�and�9�non-ICU�samples.�Full-length�sequence�could�not�
be�obtained�for�3�ICU�and�6�non-ICU�samples�because�of�low�

or� intermediate� viral� loads� (see� supplemental� Table� 4).�
VP1�sequences�could�be�obtained� for�2�additional�non-ICU�
samples.

Figure�2.�SOMs�of�unsupervised�analysis�of�the�clinical�and�biological�characteristics�of�61�patients�with�SCD�and�acute�parvovirus�B19�infection.�Unsupervised�
analysis�of�the�clinical�and�biological�characteristics�of�the�61�patients�with�SCD�and�parvovirus�B19�infection.�Patients�with�similar�characteristics�are�located�by�the�SOM�

algorithm�closely�on�the�maps,�within�one�of�the�small�groupings�(“districts”).�Each�individual�map�shows�the�mean�values�or�proportions�per�district�for�each�characteristic:�blue�

indicates�the�lowest�average�values,�red�the�highest,�with�numbers�shown�for�a�selection�of�representative�districts�in�each�SOM.�For�instance,�patients�with�erythroblastopenia�
were�more�frequently�located�in�the�lower�left�districts�and�had�SS�genotype,�lower�baseline�hemoglobin,�higher�platelet�counts,�and�less�requirement�for�vasopressors�and�
mechanical�ventilation.�1,�cluster�1;�2,�cluster�2;�3,�cluster�3;�ACP,�acute�cor�pulmonale;�ARDS,�acute�respiratory�distress�syndrome;�FiO�2�,�fraction�of�inspired�O�2�;�Hb,�
hemoglobin;�HR,�heart�rate;�IMV,�invasive�mechanical�ventilation;�LOS,�length�of�stay;�RR,�respiratory�rate;�SpO�2�,�oxygen�peripheral�saturation.
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Phylogenetic�analysis�of�the�NS1�and�VP1�genes�showed�that�all�
sequences�belong�to�the�parvovirus�B19�genotype�1a�(Figure�3),�
which�is�the�main�circulating�genotype�in�Europe.�Parvovirus�genome�
analysis�showed�no�difference�between�ICU�and�non-ICU�patients,�
nor� between� phenotypes:� ICU� patients,�whatever� their� clinical�
phenotype,�and�non-ICU�patients�did�not�form�separate�clusters�on�
both�NS1-VP1�and�near�full-length�genome�phylogenetic�analyses�
(Figure�3;�supplemental�Figure�3).�The�tree�constructed�with�the�near-
full�tree�sequences�(supplemental�Figure�3)�exhibited�the�same�
topology�as�the�tree�including�partial�NS1-VP1�sequences�(Figure�3),�
suggesting�no�potential�association�between�genetic�variations�of�
NS1-VP1�and�disease�severity,�nor�recombination�events�outside�the�
partial�NS1-VP1�sequence.�Entropy�analyses�of�the�3�viral�proteins�
(NS1,� and�VP1/2)� showed� very� little� variability� in� the� protein�
sequences�of�ICU�and�non-ICU�related�samples,�also�suggesting�no�
potential�link�between�protein�variations�of�NS1�and�VP1/2,�and�
disease�severity.�No�amino�acid�residue�in�any�of�the�viral�proteins�
was�a�signature�of�the�ICU-related�viral�sequences�(Figure�4).

Discussion
We� report�here� the� largest�cohort�of�severe�parvovirus�B19�
infection�in�ICU�patients�with�SCD�and�identified�3�phenotypes

associated�with�different�outcomes:�transient�erythroblastopenia,�
BMN/fat�embolism�syndrome,�and�other�vaso-occlusive�manifes-
tations.�These�3�clinical�phenotypes�were�associated�with�different�
initial�severity�and�outcomes�but�with�similar�parvovirus�B19�clades�
and�amino�acid�diversity.

Patients�with�transient�erythroblastopenia,�a�previously�described�
manifestation�of�parvovirus�B19,�5�were�referred�to�the�ICU�if�they�had�
either�profound�anemia�and/or�a�transfusion�contraindication�(either�
alloimmunization�or�history�of�DHTR).�Specific�DHTR�prevention�and�
management�may�indeed�require�close�monitoring�in�these�circum-
stances�20� and�this�organization�may�explain�the�presentation�of�
phenotype�1.�Patients�with�BMN/CFE�syndrome�had�a�severe�pre-
sentation,�leading�to�multiple�organ�failure.�Previous�studies�have�
found�similar�results;�a�2014�study�by�Tsitsikas�et�al�showed�an�
apparent�association�between�fat�embolism�syndrome�and�parvovirus�
B19�infection�7�and�non-SS�genotypes.�21�The�severe�thrombocyto-
penia�observed�in�this�group�was�consistent�with�the�overall�severity�
of�patients,�as�described�previously.�The�last�group�consisted�mainly�
of�patients�with�vaso-occlusive�events�(either�ACS�or�VOC),�possibly�
triggered�by�parvovirus�B19�infection.

The�identification�and�characterization�of�these�3�clinical�pheno-
types�allows�early�adjustment�of�patient�management,�because

Table�1.�Baseline�characteristics�of�61�patients�with�sickle�cell�disease�admitted�to�the�ICU�with�acute�parvovirus�B19�infection

NA

Overall� Erythroblastopenia� BMN/CFE� Other�VO�manifestations

P�valueN�=�61� n�=�26� n�=�17� n�=�18�

Age,�y� 00� 29�(24-38)� 28�(22-37)� 29�(27-40)� 26�(22-34)� .3

Genotype,�n�(%)� 00� <.001

SC 19 (31.1) 3�(11.5) 11 (64.7) 5�(27.8)

SS 36 (59.0) 22 (84.6) 6�(35.3) 8�(44.4)

Other 6�(9.8) 1�(3.8) 00 (0) 5�(27.8)

G6PD�defect� 3� 7�(12.1)� 5�(20.0)� 2�(13.3)� 00�(0)� .1

Male�gender� 00� 29�(47.5)� 14�(53.8)� 6�(35.3)� 9�(50.0)� .5

BMI,�kg/m�

2� 12� 22.9�(20.7-25.6)� 21.6�(18.7-23.5)� 26.5�(23-30.8)� 22.6�(20.3-26.3)� .005

Baseline�hemoglobin,�g/dL� 2� 9�(8-11)� 8�(7-9)� 11�(9.5-12)� 10�(8-11)� <.001

SCD�history

ACS 00 38 (62.3) 20 (76.9) 6�(35.3) 12 (66.7) .02

VOC 00 56 (91.8) 24 (92.3) 15 (88.2) 17 (94.4) .8

Stroke or angiopathy 00 2�(3.3) 2�(7.7) 00 (0) 00 (0) .2

Retinopathy 00 14 (23) 6�(23.1) 4�(23.5) 4�(22.2) >.99

Priapism 31 4�(13.3) 00 (0) 1�(16.7) 3�(33.3) .1

Osteonecrosis 1 8�(13.3) 3�(11.5) 4�(23.5) 1�(5.9) .3

Cardiopathy 00 5�(8.2) 3�(11.5) 00 (0) 2�(11.1) .3

Allo-immunization 00 8�(13.1) 8�(30.8) 00 (0) 00 (0) .002

DHTR 3 6�(10.3) 6�(26.1) 00 (0) 00 (0) .01

Baseline creatinine, μM 17 57 (45-73) 62 (48-70) 57 (44-78) 54 (45-60) .8

Immunosuppression 00 1�(1.6) 00 (0) 1�(5.9) 00 (0) .3

Exsanguination�program� 00� 5�(8.2)� 2�(7.7)� 1�(5.9)� 2�(11.1)� .8

Transfusion�exchange�program� 00� 00�(0)� 00�(0)� 00�(0)� 00�(0)

HU� 00� 24�(39.3)� 16�(61.5)� 2�(11.8)� 6�(33.3)� .004

B9�supplementation� 00� 48�(78.7)� 22�(84.6)� 11�(64.7)� 15�(83.3)� .3

Bolded�P�values�are�significant�to�the�P�<�.05�level.
BMI,�body�mass�index;�G6PD,�glucose-6-phosphate�dehydrogenase;�NA,�missing�values;�VOC,�vaso-occlusive�crisis.
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there�is�no�specific�treatment�for�parvovirus�B19�infection.�Patients�
with�erythroblastopenia�are�particularly�challenging�in�terms�of�
transfusion�compatibility.�Their�management�in�cases�of�previous�
DHTR�or�alloimmunization�relies�on�transfusion-sparing�strategies�
(such�as�erythropoietin�and�intravenous�iron),�or�pretransfusion�
preparation�(including�compatibility�testing,�provision�of�the�most

compatible�red�blood�cell�units,�or�administration�of�rituximab�22,23�).�
In�this�population,�at�risk�of�death�from�acute�anemia,�immuno-
modulation�with�intravenous�immunoglobulin�may�be�considered�to�
improve�viral�clearance�and�promote�hematopoiesis�recovery.�11�

Patients�with�BMN,�the�most�severe�phenotype,�required�prompt�
and� intensive� transfusion� therapy�24� as� recommended� for

Table�2.�Clinical�and�biological�presentation�of�patients�with�SCD�and�severe�acute�parvovirus�B19�infection�admitted�to�the�ICU

NA

Overall� Erythroblastopenia� BMN�/�CFE� Other�VO�manifestations

P�valueN�=�61� n�=�26� n�=�17� n�=�18�

Presentation at ICU admission

SAPS�II 1 19�(10-33) 14�(9-20) 35�(21-64) 19�(6-36) <.001

SOFA 12 3�(2-8) 2�(2-3) 11 (6-13) 3�(2-7) <.001

ACS 00 43 (70.5) 15 (57.7) 16 (94.1) 12 (66.7) .03

VOC 00 49 (80.3) 19 (73.1) 14 (82.4) 16 (88.9) .4

Chest pain 2 18 (30.5) 6�(24) 3�(18.8) 9�(50) .1

Extrathoracic pain 2 43 (72.9) 16 (64) 12 (75) 15 (83.3) .4

Heart�rate,�/min� 3� 113�(100-123)� 99�(85-112)� 123�(116-135)� 114�(110-125)� <.001

Respiratory�rate,�/min� 9� 23�(19-29)� 19�(17-23)� 25�(20-32)� 26�(22-30)� .01

Temperature,�→�C� 3� 38.4�(37.2-39.0)� 37.5�(37.0-38.9)� 39.0�(38.4-39.8)� 38.3�(37.1-38.5)� .001

Mean�arterial�pressure,�mm�Hg 8 85�(74-97) 81�(71-94) 79�(73-91) 89�(87-108) .02

SpO�2�,�% 2� 99 (96-100) 99 (97-100) 98 (95-99) 99 (97-100) .1

SpO�2�:FiO�2�ratio 3� 321 (238-362) 348 (313-367) 238 (152-291) 333 (254-363) .001

Glasgow coma scale 00 15 (14-15) 15 (15-15) 10 (9-15) 15 (15-15) <.001

Pain�(numerical�evaluation)� 15� 7�(2-10)� 5�(1-8)� 7�(4-10)� 9�(4-10)� .3

Fever 1� 39 (65) 12 (46.2) 15 (88.2) 12 (70.6) .02

Antibiotic 00 54 (88.5) 23 (88.5) 16 (94.1) 15 (83.3) .6

Biology�at�ICU�admission

Hemoglobin level, g/dL 00 6.6 (5.2-7.8) 5.7 (4.0-7.1) 6.9 (5.3-8.7) 7.2 (5.7-8.3) .03

Platelet�counts,�V10�9�/L 00 169 (61-303) 320 (238-497.25) 52 (37-61) 100 (75-166) <.001

White�blood�cell�counts,�V10�9�/L 3 13.0 (7.6-20.0) 15.7 (8.9-26.5) 8.3 (6.2-15.8) 12.1 (9.6-16.6) .1

Reticulocytes,�V10�9�/L 5� 29 (11-62) 13 (4-43) 39 (17-64) 50 (28-125) .01

PaO�2�,�mm�Hg 11 106 (80.75-152.75) 101.50 (80-142.25) 101 (83-153) 132 (100.50-171.50) .4

PaCO�2�,�mm�Hg 11 37.0 (31.2-41.7) 41.0 (35.5-45.2) 35.0 (31.0-39.0) 34.5 (29.0-39.5) .1

FiO�2�,�% 17 32 (27-50) 29 (21-32) 42 (38-62) 30 (21-40) .01

Arterial lactate level, mmol/L 14 1.2 (0.8-1.9) 00.8 (0.5-1.2) 1.2 (1.1-2.8) 1.3 (0.8-2.6) .01

PT, % 10 63 (49-75) 75 (63-80) 63 (44-66) 52 (41-56) .001

ASAT, UI/L 1� 156 (101-289) 93 (44-121) 277 (129-780) 243 (158-323) <.001

ALAT, UI/L 1� 45 (30-92) 42 (25-75) 85 (34-188) 45 (34-67) .1

Bilirubin,�μmol/L 1� 32 (21-55) 33 (18-59) 30 (21-39) 45 (30-71) .3

LDH, UI/L 2� 1662 (768-3656) 843 (591-1738) 3500 (2184-5438) 1822 (750-3677) <.001

Creatinine,�μmol/L 1� 59 (46-79) 58 (48-73) 80 (46-122) 57 (42-75) .3

Parvovirus�B19�serology/PCR

PvB19 IgG+ 11 44 (88) 19 (86.4) 13 (86.7) 12 (92.3) .9

PvB19 IgM+ 10 35 (68.6) 17 (77.3) 12 (75) 6�(46.2) .1

PvB19 PCR+ 2� 57 (96.6) 25 (100) 16 (100) 16 (88.9) .1

PvB19 blood PCR+ 3� 55 (94.8) 25 (100) 15 (100) 15 (83.3) .03

PvB19�viral�load,�log/mL 24 8.2�(7.0-9.1) 8.9�(7.0-9.4) 7.8�(7.4-8.7) 7.1�(3.9-8.2) .1

Estimated�FiO�2�=�ambient�FiO�2�(eg,�0.21)�+�0.03�V�O�2�flow�rate�(L/min).�19

+,�positive;�ALAT,�alanine�amino-transferase;�ASAT,�aspartate�aminotransferase;�FiO�2�,�fraction�of�inspired�O�2�;�IgM/G,�immunoglobulin�M/G;�PCR,�polymerase�chain�reaction;�PvB19,�
parvovirus�B19;�PT,�prothrombin�time;�SOFA,�sepsis-related�organ�failure�assessment;�SpO�2�,�oxygen�peripheral�saturation;�VO,�vaso-occlusive;�WBC,�white�blood�cell.
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multiorgan�failure�in�patients�with�SCD.�In�these�cases,�the�primary�
concern�is�no�longer�bone�marrow�regeneration�but�rather�organ�
support�because�of�fat�embolism�and�vaso-occlusive�damages.�
Finally,�patients�presenting�with�severe�VOC�or�ACS�should�
receive�standard�care,� following� the�established�management�
guidelines� for� these� complications� as� recommended� in�
guidelines.�25,26

The�prevalence�of�parvovirus�B19�infection�changed�during�the�
study�period.�The�decrease�observed�between�2020�and�2022�
could�be�the�consequence�of�the�COVID-19�pandemic�and�the

implementation�of�mandatory�preventive�measures�in�France�in�
2020�and�2021.�Parvovirus�B19�is�indeed�an�airborne�virus�and�
social�distancing�as�well�as�mask�wearing�could�have�been�
effective�in�preventing�its�transmission.�This�hypothesis�is�sup-
ported�by�data� from�blood�donation�screening� for�parvovirus�
B19�27� confirming�a�low�circulation�during�the�first�COVID-19�
pandemic�waves�and�a�rebound�in�2023�with�an�atypical�sea-
sonal�pattern.�Indeed,�there�was�the�same�nonseasonal�epidemic�
in�parvovirus�B19�cases�reported�in�our�study�from�2023�onward.�
One�hypothesis�for�this�subsequent�higher�parvovirus�B19�circu-
lation� after�2023� could�be� a� subsequent� reduction� in� herd

Table�3.�Outcomes�of�patients�with�SCD�and�severe�acute�parvovirus�B19�infection�admitted�to�the�ICU

NA

Overall Erythroblastopenia BMN�/�CFE Other�VO�manifestations

P�valueN�=�61 n�=�26 n�=�17 n�=�18

Vasopressor�support 00 19�(31.1) 2�(7.7) 12�(70.6) 5�(27.8) <.001

Acute�cor�pulmonale 00 20�(32.8) 1�(3.8) 12�(70.6) 7�(38.9) <.001

High-flow�oxygen�therapy 00 15�(24.6) 2�(7.7) 6�(35.3) 7�(38.9) .03

Noninvasive�ventilation 00 7�(11.5) 3�(11.5) 1�(5.9) 3�(16.7) .6

Invasive�mechanical�ventilation 00 22�(36.1) 2�(7.7) 13�(76.5) 7�(38.9) <.001

Mild�to�severe�ARDS 00 20�(32.8) 3�(11.5) 11�(64.7) 6�(33.3) .001

IMV�duration�(d) 00 00�(0-6) 00�(0-0) 9�(6-16) 00�(0-3) <.001

Prone�positioning 00 10�(16.4) 2�(7.7) 7�(41.2) 1�(5.6) .01

RRT 00 6�(9.8) 00�(0) 4�(23.5) 2�(11.1) .04

ECLS 00 3�(4.9) 00�(0) 1�(5.9) 2�(11.1) .2

iNO 1 10�(16.7) 00�(0) 6�(37.5) 4�(22.2) .01

Exchange�transfusion 00 20�(32.8) 3�(11.5) 9�(52.9) 8�(44.4) .01

Transfusion�alone 00 44�(72.1) 15�(57.7) 17�(100) 12�(66.7) .01

RBC�transfusion 1 49�(81.7) 17�(68) 17�(100) 15�(83.3) .03

Platelet�transfusion 2 15�(25.4) 00�(0) 11�(68.8) 4�(22.2) <.001

Morphine 1 52�(86.7) 22�(88) 15�(88.2) 15�(83.3) .9

Diagnostics

Pulmonary�thrombosis 00 6�(9.8) 00�(0) 3�(17.6) 3�(16.7) .1

Bone�marrow�examination 00 22�(36.1) 3�(11.5) 15�(88.2) 4�(22.2) <.001

BMN 39 12�(54.5) 00�(0) 12�(85.7) 00�(0) .001

Neurological�manifestation 00 19�(31.1) 3�(11.5) 14�(82.4) 2�(11.1) <.001

Cerebral�imaging 00 17�(27.9) 2�(7.7) 13�(76.5) 2�(11.1) <.001

CFE 44 12�(70.6) 00�(0) 12�(92.3) 00�(0) .002

Acute�anemia 00 56�(91.8) 25�(96.2) 15�(88.2) 16�(88.9) .6

Thrombopenia,�<150�V�10�9�/L 00 34�(55.7) 00�(0) 17�(100) 17�(94.4) <.001

Hepatitis* 00 48�(78.7) 16�(61.5) 17�(100) 15�(83.3) .01

Myocarditis 00 1�(1.6) 00�(0) 00�(0) 1�(5.6) .3

Macrophagic�activation�syndrome 00 1�(1.6) 00�(0) 1�(5.9) 00�(0) .3

Parvovirus�treatment

IVIg�or�plasma�exchange 00 15�(24.6) 6�(23.1) 6�(35.3) 3�(16.7) .4

Erythropoietin 1 19�(31.7) 9�(36) 6�(35.3) 4�(22.2) .6

In-ICU�death 00 5�(8.2) 00�(0) 3�(17.6) 2�(11.1) .1

ICU�length�of�stay,�d 00 7�(4-11) 5.5�(3-9) 11�(9-28) 6�(3-7) <.001

Hospital�length�of�stay,�d 2 15�(10-24) 11�(9-20) 28�(19-41) 13�(8-20) .001

ARDS,�acute�respiratory�distress�syndrome;�ECLS,�extracorporeal�life�support;�IMV,�invasive�mechanical�ventilation;�iNO,�inhaled�nitric�oxide;�IVIg,�intravenous�immunoglobulin;�RBC,�red�
blood�cell;�RRT,�renal�replacement�therapy;�VO,�vaso-occlusive.

*Transaminase�elevation.
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immunity,�although�this�is�not�supported�by�robust�data.�Another�
hypothesis�for�this�epidemic�could�involve�mutational�changes�in�
the�virus;�enhancing�viral�fitness;�increasing�transmissibility;�and,�
eventually,�immune�escape.�However,�the�phylogenetic�analysis�
showed�that�ICU�and�non-ICU�patients�were�infected�by�the�same�
genotype�(1a)�and�that�amino�acid�variability�was�not�significantly�
different�in�the�former�than�in�the�latter�group,�corroborating�pre-
vious�works�reporting�the�limited�viral�diversity�of�parvovirus�B19,�
genotype�1a.�28�Virological�analyses�also�suggested�that�clinical�
phenotypes�were�not�related�to�viral�diversity.�A�change�in�sea-
sonal�outbreak�was�also�described�for�respiratory�syncytial�virus

(RSV)�and�influenza�after�the�COVID-19�pandemic,�29,30�associ-
ated�with�a�reduced�genomic�diversity.�Phylogenetic�analyses�
showed�major�collapse�of�RSV�and�influenza�lineages�during�years�
2020�and�2021�compared�with� those�circulating�before� the�
COVID-19�pandemic.

Possible�explanations�for�these�phenotypic�differences�include�
host-related� factors.� It�has�previously�been� reported� that�SC�

genotype�may�be�associated�with�more�ICU�admission�during
parvovirus�infection.�31�BMN�has�previously�been�associated�with
SC� genotype,�7� a� finding� consistent�with� our� study.�Several
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hypotheses� could� be� proposed� to� explain� this� association,�
including�higher�baseline�hemoglobin�level,�leading�to�increased�
blood�viscosity,�or�a�lack�of�severe�previous�complications�from�

SCD,�because�only�35%�of�patients�in�this�group�in�our�study�had�
previously� experienced� ACS,� possibly� accounting� for� less�
compromised�immunological�features�(including�splenic�function)�
and�delayed�diagnosis.�7,21�Although�the�exact�pathophysiology�of�
BMN�remains�unclear,�our�findings�suggest�that�both�genotype�
and�patient�history�contribute� to� the� risk�of�developing� this�
phenotype.�Regarding� erythroblastopenia,� the� severity�of� this�
phenotype�primarily�stems�from�the�difficulty�in�transfusing�patients�
with�a�history�of�DHTR�or�alloimmunization.�The� least�severe�
phenotype,�erythroblastopenia,�was�more�frequently�observed�in�
patients�on�long-term�HU�therapy.�This�is�consistent�with�the�
higher�proportion�of�patients�with�the�SS�genotype�in�this�group.�
The�potential�protective�effect�of�HU�against�parvovirus�B19�
complications�has�been�explored�in�several�studies.�In�vitro�find-
ings�have�shown�that�HU�inhibits�parvovirus�B19�replication�in�
erythroid�progenitor�cells,�providing�experimental�evidence�of�its�
antiviral�activity�at�clinically�relevant�concentrations�measured�in�
patients�with�SCD�receiving�HU�therapy.�32�This�protective�effect

on�erythroid�progenitors�could�potentially�extend�to�other�cell�
populations�susceptible�to�infection,�and�contribute,�at�least�in�
part,� to�phenotypic�differences� in�disease�severity.� In�vivo,�a�
retrospective�study�of�parvovirus�B19–associated�aplastic�crises�
in�children�found�that�HU�treatment�was�associated�with�fewer�
transfusions� and� a� higher� hemoglobin� nadir� during� transient�
aplastic�crisis.�These�findings�suggest�a�protective�role�for�HU,�
that�may�extend�to�endothelial�invasion�and�prevention�of�the�most�
severe�clinical�phenotypes.�33

Numerous�microorganisms�are�involved�in�the�infectious�etiology�of�
SCD� complications.� Bacterial� infections,� including� pulmonary�
infections�34�and�bacteremia,�35�are�known�to�trigger�VOC�and�ACS,�
as�are�viral�infections�such�as�influenza�36�and�COVID-19.�37,38�In�
addition,�primary�Epstein-Barr�virus�infections�have�been�reported�to�
cause�organ�failure�and�splenic�sequestration.�39,40�During�bone�
marrow�infection,�parvovirus�B19�typically�induces�apoptosis�of�
infected�erythroid�progenitors,�leading�to�aplastic�crisis.�However,�
endothelial�dysfunction�can�be�induced�by�parvovirus�B19�infection�
of� nonerythroid� tissues,� including� endothelial� cells,�41,42� under�
certain� conditions.� Other� localizations� of� parvovirus,� including
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tubular�and�vascular�involvement�within�renal�tissue,�43�have�indeed�
been�suggested�previously.�Endothelial�viral�invasion�may�increase�
vascular�adhesion�and�vaso-occlusion,�particularly�in�patients�with�
higher�baseline�hemoglobin�levels.�The�increased�rate�of�pulmonary�
thrombosis�observed�in�this�group,�although�not�statistically�signif-
icant�in�our�study,�supports�this�hypothesis.�Bone�marrow�endo-
thelial�dysfunction�and�vaso-occlusive�mechanisms�could�lead�to�
necrosis.�The�mechanisms�underlying�the�differential�targeting�of�
erythroid�progenitors�vs�endothelial�cells�remain�unclear.�However,�
our�study�provides�insight�into�the�absence�of�a�specific�viral�protein�
or�genetic�etiology�driving�these�phenotypic�differences.�Viral�loads�
were�similar�across�all�3�phenotypic�groups,�ruling�out�a�direct�
inoculum�effect�on�presentation.�One�hypothesis�is�that�variability�in�
the�host’s�constitutive�or�adaptive� immune� response,�possibly�
influenced�by�an�unidentified�genetic�component,�may�play�a�role.�In�
addition,�the�preservation�of�spleen�function�in�non-SS�genotypes�
may�also�contribute�to�these�differences.�From�an�immunological�
perspective,�88%�of�patients�were�seropositive�for�anti-parvovirus�
B19� immunoglobulin�G,� suggesting�previous�exposure� to� the�
virus.�This�is�consistent�with�published�data�in�adults,�in�cases�in�
which�subclinical�parvovirus�B19�infection�has�been�reported�in�
children�with�sickle�cell�anemia.�44

Our�study�has�some�limitations.�First,�although�multicentric,�most�
patients�were�admitted�in�1�reference�hospital�(Henri�Mondor,
Assistance�Publique�Ho�

ˇ

pitaux�de�Paris,�Creteil,�France).�There�are
also�several�biases�inherently�related�to�the�retrospective�design�of�
the�study.�We�could�not�exclude�a�higher�severity�of�patients,�
sometimes�referred�for�specialized�care,�which�precludes�gener-
alization�to�the�general�SCD�population.�However,�our�intention�
was�to�focus�on�severe�parvovirus�B19�infection�in�patients�with�
SCD,�and�this�primary�objective�was�achieved�in�this�population.�
Secondly,�because� ICU�admission�was�an� inclusion�criterion,�
patients�with�erythroblastopenia�were�characterized�by�a�particular�
severity�and/or�past�history�of� transfusion�contraindication�or�
DHTR�among�this�group.�Moreover,�this�cohort�was�established�in�
expert�SCD�centers,�with�a�potential�recruitment�bias,�because�
asymptomatic� or� mildly� symptomatic� patients� may� not� have�
undergone�parvovirus�testing.�However,�this�cohort�primarily�aimed�
to�describe�the�most�severe�phenotypes�requiring�intensive�care,�
and� this� inclusion/memory�bias� seemed� to�mildly� affect� this�
objective.�There�is�some�overlap�between�the�BMN/CFE�pheno-
type�and�the�patients�with�most�severe�vaso-occlusive�manifesta-
tions�on�SOM�analysis.�These�common�features�may�be�because�
of�some�degree�of�BMN�in�these�patients,�which�may�not�have�
been�detected�by�imaging�or�biological�assessment.�The�decision�
to�prioritize�clinical�definitions�over�unsupervised�clustering�was�
made�to�ensure�the�most�clinically�relevant�approach,�given�the�
therapeutic�implications.�Because�of�the�retrospective�nature�of�
this�study,�some�data�were�missing,�which�may�have�influenced�the�
results.�Data� imputation�was�applied� for� the�FAMD�analysis,�
whereas�patients�with�missing�data�were�excluded�from�SOMs�
and�clustering�analyses.�However,�the�identified�clinical�patterns�
remained�consistent�across�analyses,�suggesting�that�the�missing�
data�likely�had�minimal�impact�on�the�overall�findings.�In�addition,�
the�use�of�immunoglobulins�was�rare,�and�the�size�and�diversity�of�
the�population,�as�well�as�the�low�mortality�rate,�precluded�any�
analysis�to�conclude�on�a�beneficial�effect�of�this�treatment�on�
mortality.�Finally,�to�our�knowledge,�no�previous�studies�have�
specifically�compared�statistical�analyses�in�patients�with�SCD�or

applied�clustering�methods�to�parvovirus�B19�infections.�Although�
unsupervised�clustering�has�been�used�in�the�context�of�other�viral�
infections,�such�as�in�patients�who�were�critically�ill�with�COVID-
19�45�or�those�with�RSV�46�infection�using�self-organizing�maps�or�
FAMD,�these�approaches�have�not�yet�been�explored�in�the�spe-
cific�clinical�setting�we�investigated.

However,�to�our�knowledge,�this�is�the�largest�study�to�describe�
severe�parvovirus�B19�infection�in�ICU�patients�with�SCD,�and�the�
identification�of�clinical�subtypes�associated�with�severity�and�
outcomes�may�help�guide�their�management.

Conclusion
In�patients�with�SCD,�parvovirus�B19�infection�resulted�in�3�clinical�
phenotypes�associated�with�severity:�erythroblastopenia,�BMN�/fat�
embolism,� and� other� manifestations� associated� with� vaso-
occlusive�events.�Parvovirus�B19�genotype�1a�was�involved�in�all�
cases,�and�we�found�no�association�between�viral�variability�and�
clinical�phenotypes�or�patient�severity.�Clinicians�should�be�aware�
of�the�risk�of�multiorgan�failure�in�patients�with�BMN,�especially�
given�the�epidemic�rebound�observed�since�2023.�Each�pheno-
type�requires�a�specific�and�prompt�therapeutic�approach,�inte-
grating�either�transfusion-sparing�strategies�or�transfusion�support�
with�standard�patient�care.�Further�investigation�into�the�cause�of�
this� increased�viral�circulation� is�urgently�needed�to�consider�
preventive�or�curative�measures� for�parvovirus�B19� infection,�
which�has�potentially�severe�consequences�in�patients�with�SCD.
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