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Acquiring recursive structures through distributional learning
Daoxin Li and Kathryn D. Schuler

University of Pennsylvania

ABSTRACT
Languages differ regarding the depth, structure, and syntactic domains of 
recursive structures. Even within a single language, some structures allow 
infinite self-embedding while others are more restricted. For example, when 
expressing ownership relation, English allows infinite embedding of the 
prenominal genitive -s, whereas the postnominal genitive of is much more 
restricted. How do speakers learn which specific structures allow infinite 
embedding and which do not? The distributional learning proposal suggests 
that the recursion of a structure (e.g., X1’s-X2) is licensed if the X1 position and 
the X2 position are productively substitutable in non-recursive input. The 
present study tests this proposal with an artificial language learning experi
ment. We exposed adult participants to X1-ka-X2 strings. In the productive 
condition, almost all words attested in X1 position were also attested in X2 
position; in the unproductive condition, only some were. We found that, as 
predicted, participants from the productive condition were more likely to 
accept unattested strings at both one- and two-embedding levels than 
participants from the unproductive condition. Our results suggest that 
speakers can use distributional information at one-embedding level to 
learn whether or not a structure is recursive.
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1. Introduction

This study investigates the learning mechanism that enables speakers to determine which structures 
are recursive in a given language. Recursion refers to infinite self-embedding of a particular type of 
linguistic element or grammatical structure. Many linguists and cognitive scientists agree that the 
ability for recursion is a crucial part of the language faculty and is universal across languages (e.g., 
Pinker 1994, Hauser et al. 2002).1 However, languages differ regarding the depth, structure, and 
syntactic domains of recursive structures (e.g., Pérez-Leroux et al. 2018). Indeed, even within a single 
language, some structures are more restricted than others. For example, when expressing ownership 
relation, English allows infinite embedding with the prenominal s-possessive, (1a), whereas the 
postnominal of-possessive is much more limited, (1b), (see Levi 1978, Biber et al. 1999, Rosenbach  
2014 for extensive discussion). Given the cross- and within-linguistic differences in recursive struc
tures, speakers have to learn from language-specific experience in which syntactic domains the ability 
of recursion can be applied. Thus, what kind of linguistic experience do they use, and how do they 
make use of it?

CONTACT Daoxin Li daoxinli@sas.upenn.edu University of Pennsylvania, Department of Linguistics, 3401-C Walnut Street, 
Suite 300, C Wing, Philadelphia, 19104-6243.
1We are also aware of a long tradition of research on the learning and processing constraints on recursion, e.g., center embedding 

(e.g., Roth 1984, Karlsson 2007, Christiansen & MacDonald 2009). Our study, though, does not rely on assumptions of the status of 
recursion, and explores the learnability problem from a different approach, namely how recursive structures can be learned from 
one-level embedding input.
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One line of research has proposed that learners determine that a structure can be used recursively by 
observing evidence for recursive embedding in their input (e.g., Roeper & Snyder 2005, Roeper 2011). 
Under this account, the learner starts with the default assumption that a structure cannot be used 
recursively, and this assumption is only revised when recursive embedding of the structure is observed 
in the input (e.g., the man’s neighbor’s book). This mechanism prevents overgeneralization of restricted 
structures like of-possessive (1b), but is challenged by the empirical fact that evidence for recursive 
embedding is rarely attested in young children’s input. For example, Giblin et al. (2019) examined 
caregivers’ speech in CHILDES (MacWhinney 2000), where they found only 107 recursive s-genitives 
in 3.1 million English utterances, and no recursive genitives with the productive genitive marker de in 
three Mandarin corpora. These findings predict the acquisition of recursive structures to be very 
difficult, if not impossible, under the recursive embedding approach. Yet, despite the paucity of 
explicit evidence in the input, several behavioral experiments have reported early acquisition of 
recursive structures. For instance, 4-year-old English- and Mandarin-speaking children can compre
hend and produce multi-level recursive s- or de-possessives (e.g., Giblin et al. 2019, Li et al. 2020) — an 
unexpected finding if children solely rely on direct evidence of recursive embedding.

Moreover, there is a logical problem of learning recursive structures: no N-level embedding entails 
even N+1 levels of embedding. Thus, any learning mechanism should explain how native speakers 
learn that recursive structures can embed deeper than have been observed in the input, and ultimately, 
how they learn that recursive structures can stack infinitely when examples in the input are always 
finite.

Recently, an alternative mechanism for learning recursive structures was proposed (Grohe et al.  
2021, Li et al. 2021), which relies on distributional learning (e.g., Maratsos & Chalkley 1980, Braine  
1987). It has been suggested that the recursivity of a structure is related to its productivity in one-level 
non-embedded data (e.g., Pérez-Leroux et al. 2022). The distributional learning proposal (Grohe et al.  
2021, Li et al. 2021) further suggests that recursion can be viewed as structural substitutability. That is, 
for a structure such as X1’s-X2, where X is the head of the structure and X1 and X2 stand in a selectional 
relation, it is recursive if position X1 and X2 are productively substitutable, i.e., any noun that appears 
in one of those positions can also be used in the other position. For example, as demonstrated in Li 
et al. 2021, for the English possessive X1’s-X2, all nouns used in X1 can be used in X2 as well (denoted by 
X1↦X2), that is, the possessor can always be possessed, thus allowing infinite embedding to be built in 
this way. Therefore, according to this approach, children learn recursion by learning the lexicon for 
which structural substitutability holds. For example, if the phrases the mother’s car and the boy’s 
mother are attested in one’s linguistic input, then the s-possessive is recursive at least for the word 
mother, and therefore mother’s mother . . . can infinitely embed. If there are multiple words attested in 
both positions, then the learner will seek to form generalizations over those attested words: If there is 
sufficient evidence that structural substitutability is generalizable— that is, if a sufficiently large 
proportion of words attested in one position are also attested in the other position—then the child 
will acquire the generalization that all words that can be used in one position (e.g., X1) can also be used 
in the other (e.g., X2) and therefore the structure can recursively embed for all words eligible for X1; 
otherwise, the structure is restricted to certain (types of) words attested in both positions in the input. 
Thus, under the distributional learning account, children discover whether a structure allows recur
sion in the same way they discover other productive generalizations in their language.

Importantly, Grohe et al. (2021) and Li et al. (2021) argue that the fact that multi-level recursive 
embedding is rarely attested in input to children is no longer a problem under their distributional 
learning proposal. Learners can discover structural substitutability (and therefore that a structure 
allows recursion) by utilizing distributional information at one level of embedding. Grohe et al. (2021) 
and Li et al. (2021) further argue that the distributional learning proposal addresses the logical 

(1) a. the man’s neighbor’s book
b. ??/*the book of the neighbor of the man
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problem of learning recursive structures, because it predicts that a structure is either infinitely 
recursive or must stop at one-level: If structural substitutability holds at one level, then the structure 
allows infinite embedding for all the words that follow the generalization acquired from one-level data.

While there are other approaches to the structural representation of recursive structures and its 
relation to acquisition (e.g., Adger 2003, Hartmann & Zimmermann 2002), the distributional learning 
proposal is unique in that head and selection are the only structural assumptions required. Li et al. 
(2021) note that the head requirement is necessary because only when X is the head of the structure 
does the structure involve self-embedding, which is the definition of recursion. For instance, in the 
possessive structure N1’s-N2,N2 is the head of the structure (e.g., ‘the neighbor’s book’ is essentially an 
instance of book), therefore, productive substitutability would lead to recursion under this proposal 
because the notion of the head establishes an equivalence relation between a head noun and all 
syntactic objects headed by that noun. In contrast, in English NP1-V-NP2 structures (e.g., ‘dogs chase 
cats’), for example, neither of the two NPs is the head of the structure, so substitutability would not 
lead to recursion (e.g., ‘*dogs chase cats chase rats’) although NP1 and NP2 can be substitutable. 
Importantly, while the distributional learning proposal does not itself rely on any complex syntax/ 
semantics machinery, it does not need to be incompatible with the existing syntactic theories of 
recursive structures either. Instead, it offers an account for how children learn from their sparse input 
when recursion is allowed and when it is not.

Li et al. (2021) argue that the distributional learning proposal should apply to all recursive 
structures that satisfy the head and selection requirements,2 and have provided initial support for 
this claim with corpus studies on a range of different structures across languages. Grohe et al. (2021), 
for example, found that for determiner-adjective1-adjective2-noun strings in English and German 
input corpora, adjective1 and adjective2 are fully substitutable in both languages according to one 
measure of productivity: the Tolerance/Sufficiency Principle (TSP; Yang 2016);3 arguing that the 
productivity and recursion of prenominal adjective stacking can therefore be learned through dis
tributional cues in the two languages.4 Li et al. (2021) similarly examined productively recursive and 
restricted possessive structures in Mandarin Chinese, English, and German, and confirmed that the 
distributional learning proposal can account for the recursivity of such structures. First, for freely 
recursive structures without any restriction - German von-possessive and Mandarin de-possessive, the 
study found N1 and N2 are bi-directionally substitutable, so children should learn those structures can 
be freely embedded. English s-possessive and of-possessive are both one-way substitutable: It’s N1↦N2 
for the s-possessive and N2↦N1 for the of-possessive, where N2 is the possessee. Therefore, those 
structures should only be recursive for the types of words eligible for N1 in the s-possessive and for N2 
in the of-possessive, and children need to discover what nouns are eligible for those positions and thus 
trigger recursion. Through semantic analyses of attested words in the input, Li et al. (2021) found 
children can discover many of the well-documented restrictions on those structures for recursive 
embedding: e.g., alienable possession is freely available in the s-possessive (e.g. ‘neighbor’s book’) 

2Recursive structures where the crucial elements are not in a selectional relation are not the focus of the distributional learning 
proposal. Li et al. (2021) proposed that they can also be learned distributionally but in a slightly different way. For instance, for the 
so-called CP-recursion (e.g., ‘John thinks that Bill said that Mary left’), the crucial element that decides whether a CP can be 
embedded inside another is whether proper CP-taking verbs are used. Since the two verbs in the configuration (e.g., ‘said’ and 
‘think’) are in different CPs, they cannot select each other. Therefore, in order to learn this recursion, learners will need to learn (i) 
there are verbs that can take CP complements (e.g., ‘John said [CP].’); (ii) those same verbs can be the main verb in an embedded 
CP (e.g., ‘[John said it].’). Therefore, to learn (i) and (ii), children still need to learn that the two verb positions are substitutable. 
Thus, the idea of substitutability works for all recursive structures, but applies in slightly different ways depending on whether 
there is a selectional relation.

3One reviewer asked about details of the calculation using TSP in Grohe et al. 2021 and Li et al. 2021. Given the TSP formula e ≤ N/ 
lnN, N is the number of words in a child’s vocabulary that are attested in a certain position of a structure, and e is the number of 
words out of N that are not attested in the other position of that structure. Both N and e are obtained from input corpus data.

4Some languages have preferences for the order of adjectives when they stack (e.g., in English, ‘the second green ball’ is usually 
preferred over ‘the green second ball’). Grohe et al. (2021) and Li et al. (2021) argue that the distributional learning proposal only 
concerns whether recursion can possibly be allowed by grammar (‘the green second ball’ is not necessarily ungrammatical in 
felicitous contexts, e.g., given that there are several rows and there is a ‘second ball’ in each row, one wants to stress the green 
one); the preference will be learned via other mechanisms such as variational or reinforcement learning.
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whereas of-possessive is largely limited to inalienable possession (e.g. ‘end of the story’); and the 
possessee in the of-possessive must be inanimate as a rule (Levi 1978, Biber et al. 1999, Rosenbach  
2014). When those constraints are met, the restricted of-possessive can be embedded as well, for 
example, ‘the top of the tip of the hat’. Please see Li et al. (2021) for more detailed discussions on the 
acquisition of recursion with constraints. Finally, for German s-possessive and the possessive without 
de in Mandarin, the proportion of nouns appearing in both positions fail to meet the threshold of 
productivity for each direction, so depending on individual’s linguistic experience, those structures 
will either be recursive only for the highly limited words attested in both positions, or not recursive at 
all because lexicalization in the absence of productivity requires extensive exposure, which is not 
guaranteed for all speakers. Indeed, surveys by the authors with native speakers of those languages 
found considerable individual differences regarding whether those structures can be possibly 
embedded.5

In summary, the distributional learning proposal offers a novel account of how speakers learn 
which structures allow recursion in a given language. Previous corpus studies have provided initial 
evidence in support of the proposal, showing—across a variety of structures and languages—that there 
is reliable distributional information in one-level input to acquire recursive structures. However, more 
work is needed to determine whether such a distributional learning mechanism would indeed enable 
speakers to discover which structures are recursive in any given language. Certainly, the proposal 
should be evaluated on a range of linguistic phenomena, not only beyond those including in Grohe 
et al. (2021) and Li et al. (2021), but also including structures for which the constraints on recursion 
are undeniably more complex. Equally important, however, is the need to examine human learning 
behavior, to determine whether learners can make use of distributional information as predicted by 
the account. In other words, it is not enough to show that a given type of distributional information is 
available in the learner’s input; one must also demonstrate that human learners can make use of this 
available information during learning.

In the present study, we use an artificial language learning paradigm to test the proposal in precisely 
this way: when provided with one-level distributional information and no semantic information, do 
adults learn recursive structures as predicted by the account? To preview the experiment, in two 
conditions, participants were exposed to one-level X1-ka-X2 strings in an artificial language. We 
manipulated the distribution of words in the exposure so that the X1 and X2 positions are productively 
substitutable in one condition, but not in the other. At test, we asked participants to rate one- and two- 
level X1-ka-X2 strings that were never attested during exposure, together with attested and ungram
matical controls. If speakers indeed use one-level distributional information to learn recursive 
structures as predicted by the distributional learning proposal, then participants exposed to productive 
input should rate the unattested strings higher than participants exposed to unproductive input, since 
the former group are predicted to be be more likely to acquire the generalization of structural 
substitutability and extend it to unattested words. We present and discuss the experiments in the 
following sections.

2. Method6

2.1. Participants

Participants were 50 adult native English speakers with typical hearing and vision (or corrected 
vision). All participants were recruited and run online via Prolific Academic (www.prolific.ac) and 
paid $9/hour as compensation. The 50 participants were assigned to one of two language conditions, 
Productive or Unproductive, though 2 participants in the Unproductive condition did not complete 

5More discussion on how the proposal works for structures from a typologically diverse range of languages can be found in Li et al. 
(2021) and Li & Yang (in prep).

6An earlier version of this experiment was reported in the Proceedings of the 43rd Annual Meeting of the Cognitive Science Society 
(Li & Schuler 2021).
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the experiment and were excluded from analysis. The final sample of participants includes 48 adults, 
with 23 in the Unproductive condition (age = 30.48, range = 19-47) and 25 in the Productive condition 
(age = 27.42,7 range = 19-40).

2.2. Stimuli

The exposure stimuli in both conditions consisted of 44 strings generated from an artificial grammar 
of the form X1-ka-X2, where X1 and X2 denote the position in the structure (pre- or post-ka, 
respectively). In addition to the functional morpheme -ka-, the artificial language contained 12 
nonsense words adapted from Ruskin (2014), all of which were mono- or bi-syllabic words that 
conformed to English phonotactics.

In both conditions, all 12 words were attested in the X1 position during language exposure (see 
Table 1). Crucially, we manipulated the number of words that were also attested in the X2 position, 
ensuring there was sufficient evidence for structural substitutability X1↦X2 in the Productive condi
tion (10 of the 12 words attested in X2) but not in the Unproductive condition (6 of the 12 words 
attested in X2). We selected 10 of 12 in the Productive condition and 6 of 12 in the Unproductive 
condition because these values are consistent with productivity (or lack of productivity in the 
Unproductive condition) according to several different metrics. For example, some metrics require 
a pattern to apply to the majority of types in order to meet the threshold for productive generalization 
(e.g., Bybee 1995). Here, structural substitutability is predicted to be productive if at least 7 of our 12 
words are also attested in X2 position. Other metrics require a larger proportion of words to be attested 
in X2 position in order to be considered productive. For example, the Tolerance/Sufficiency Principle 
(Yang 2016) proposes that a rule R defined over N items productively generalizes if the number of 
exceptions to the rule is less than or equal to the number of items divided by the natural log of the 
number of items (e ≤ N/lnN). Here, the Tolerance/Sufficiency Principle permits at most 4 exceptions 
to structural substitutability (12/ln12 = 4.83), meaning at least 8 of our 12 words must also be attested 
in X2 position for the rule to generalize. Still other metrics generate an index of productivity—typically 
a value between 0 and 1—to capture the intuition that the more items a pattern applies to, the more 
likely it is to be productive. The Word-Form Rule (Aronoff 1976, Baayen & Lieber 1991), for example, 
states that the productivity of a given structure can be quantified as the number of items the structure 
applies to divided by the number of items it could potentially apply to. Here, our values of 6 

Table 1. The distribution of words in the 44 string exposure corpus and word frequency in X1/X2 

position.

Word Frequency

Unproductive Productive

X1 X2 X1 X2

nogi 36 6 30 12 24
sane 10 10 0 10 0
tesa 6 6 0 3 3
waso 6 6 0 3 3
sito 6 2 4 3 3
kosi 6 2 4 3 3
mito 4 2 2 2 2
kewa 4 2 2 2 2
bila 4 2 2 2 2
seta 2 2 0 1 1
sasa 2 2 0 1 1
tana 2 2 0 2 0
Total 88 44 44 44 44

7One participant in the productive condition declined to report age.
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(Unproductive condition) and 10 (Productive condition) out of 12 words correspond to a productivity 
index of 0.50 and 0.83, respectively. Importantly, while our conditions are consistent with each of these 
metrics of productivity, our goal in the current experiment is not to distinguish between these different 
metrics; instead, our stimuli were designed to meet all of these metrics to ensure only one of our input 
conditions provides evidence for productivity during exposure.

The exposure set was also constructed such that some words were more frequent than others in order to 
imitate word frequency in natural language input. To keep the two conditions balanced, we kept the total 
token frequency of each word the same across the two conditions, and ensured the most frequent word was 
attested in both the X1 and X2 positions in both conditions. We also ensured that both high and low token 
frequency words were among the words that did not occur in the X2 position. The distribution of the words 
and their frequencies across conditions and X-positions in the exposure set are shown in Table 1.

The test strings were generated to include either one (X1-ka-X2) or two levels (X1-ka-X2-ka-X3) of 
embedding. At each level, there were three types of test strings: attested, unattested, and ungrammatical, 
where attested/unattested means whether the words have been attested at the specific position during 
exposure, not necessarily whether the string as a whole has been attested. Attested strings were strings or 
combinations of two strings that had been heard during exposure (i.e., were part of the exposure set). For 
example, as shown in Table 2, for a one-level string, it means the exact string (e.g., waso-ka-mito) has been 
heard during exposure phase; for a two-level string, it means both components (e.g., sane-ka-kewa and 
kewa-ka-nogi) have been heard. Therefore, all the words have been attested in those positions in relation to 
ka during exposure. In unattested strings, the post-ka positions (X2 and X3) were occupied by a word that 
never appeared in X2 position during exposure. Thus, in the unattested strings in Table 2, sane, tesa and tana 
have never been attested after ka. Finally, ungrammatical strings were strings with wrong word order, such 
as ka-X1-X2 or ka-X1-X2-X3-ka. There were six test strings of each type at each level, leading to 36 test strings 
in total. We designed our test strings such that in each string type, there were both words of higher frequency 
and words of lower frequency, in order to avoid the influence of token frequency in the test. The test strings 
were delivered in random order.

All exposure and test strings were generated by a female voice using an online speech synthesizer, 
Natural Reader. We generated each unique string separately such that all strings were generated with 
the same speed, volume, and pitch.

2.3. Procedure

The experiment consisted of two phases: exposure, in which participants were exposed to the artificial 
language, and test, in which participants were tested on how well they learned and whether they formed 
a productive generalization. In the exposure phase, participants were told they would hear strings from 
a new language, and to pay careful attention to the strings, because they would be tested on their knowledge 
of the language later. During exposure, participants heard two repetitions of the exposure corpus (44 X1- 
ka-X2 strings) presented in pseudo-random order as they viewed a still, unrelated nature scene (i.e., there 
was no accompanying referential world). There was 1.5s of silence between each string, and participants 
were offered a break after each repetition of the 44 strings to prevent task fatigue. In order to make sure that 
the participants were paying attention, other sounds were randomly dispersed among the linguistic strings, 
such as bird chirping sounds, and participants were later asked how many such sounds they heard. The 
random sounds occurred only rarely so as not to interfere with the learning of the language (i.e., 2 or 3 times 
per block). All participants answered those questions correctly.

Table 2. Sample test strings in Unproductive condition.

Type One-level Two-level

attested waso-ka-mito sane-ka-kewa-ka-nogi
unattested nogi-ka-sane waso-ka-tesa-ka-tana
ungrammatical ka-bila-kosi ka-waso-kosi-sito-ka
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Once the exposure phase was completed, the test phase began. On each test trial, participants heard 
a test string, and were asked to rate the acceptability of the string on a scale of 1 to 5. Participants were 
told to decide if those strings came from the language that they had just heard (e.g., whether they think 
a native speaker of the language would have said that particular string). 1 meant the string was 
definitely not from the language; 2 meant the string may not have come from the language; 3 meant 
the string may or may not have come from the language; 4 meant the string may have come from the 
language; 5 meant the string definitely came from the language.

In both conditions, participants are expected to rate attested strings significantly higher than 
ungrammatical strings at both levels. Of particular interest are the unattested strings. According to 
the distributional learning proposal, only participants in the Productive condition would learn that X1 
↦X2 is productive in the X1-ka-X2 structure, and would thus generalize this pattern to unattested 
words: If a word appeared in position X1 during exposure, it must be able to appear in position X2 as 
well, even though it was never attested there in the input. On the other hand, X1↦X2 is not productive 
in the Unproductive condition: for words that only appeared in position X1, participants would be 
more likely to think that those words cannot appear in position X2. Therefore, it is predicted that the 
rating score for one-level unattested strings relative to one-level ungrammatical strings by participants 
in the Productive condition should be higher than that by participants in the Unproductive condition. 
Furthermore, given the productivity of the structure at level-one, participants in the Productive 
condition would acquire the generalization that X1↦X2 holds for any level so all of the 12 words can 
be used in both X1 and X2 positions to create recursive embedding, but for participants in the 
Unproductive condition, they would be more likely to learn that the words unattested in X2 position 
cannot appear after ka at any level and that recursive embedding is only possible with the attested 
words. Thus, participants in the Productive condition are predicted to rate two-level unattested strings 
higher than participants in the Unproductive condition as well.

3. Results

3.1. Raw Scores

The individual rating scores by condition, embedding level, and test string type are summarized in Table 3. 
We analyzed the results using ordinal regression, with rating score as an ordered factor from 1 to 5, 
Condition (Unproductive, Productive), Level (as an ordered factor 1 or 2) and test string Type (attested, 
unattested, or ungrammatical) as fixed effects, and by-participant random intercepts and random slopes for 
Type. None of Condition, Level or Type is a significant predictor of the rating score, but their three-way 
interaction is (p < 0.001). Specifically, attested strings were rated significantly higher than unattested strings 
(β = -1.23, SE = 0.29, z = -4.24, p < 0.001) and ungrammatical strings (β = -3.14, SE = 0.28, z = -11.03, p <  
0.001); 1-level strings were rated significantly higher than 2-level strings (β = -1.38, SE = 0.22, z = -6.33, p <  
0.001); and 2-level unattested (β = -1.28, SE = 0.44, z = -2.90, p = 0.004) and ungrammatical strings (β  
= -1.39, SE = 0.45, z = -3.09, p = 0.002) were rated lower in the Unproductive condition. The interaction 
between Type and Condition is also a significant predictor of the rating score (p = 0.002), suggesting 
unattested strings were rated higher in the Productive condition. Therefore, as predicted, the results show 
that participants in the Productive condition rated unattested strings at both levels higher than participants 
in the Unproductive condition, suggesting that speakers can indeed use one-level distributional information 
to learn about recursive structures.

What we are most interested in this study, though, is not just the raw rating score for each type of 
test strings and their difference per se, but rather how well participants learned the input language and 
whether (and how much) they generalized. Therefore, in order to more directly and more informa
tively capture the phenomena of interest, in addition to our analysis of the raw rating scores, we also 
calculated and analyzed a learning index and a generalization index, which measured participants 
learning and generalization, with their ratings for ungrammatical test strings as the baseline. The 
details are described in the following subsections.
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3.2. Learning

To capture how well participants acquired their input language, we calculated a learning index 
for each participant. We took the difference score of a participant’s mean response on Attested 
test sentences minus their mean response on Ungrammatical test sentences (see (2)). We 

Table 3. Individual learning (L) and generalization (G) indices and rating scores for attested (A), unattested (UA), and ungrammatical 
(UG) sentences, ordered by participant learning score at 1-level embedding.

1-level 2-level

Index Mean rating Index Mean rating

Participant L G A UA UG L G A UA UG

Productive Condition
dhuu 3.00 1.83 4.33 3.17 1.33 2.67 0.83 3.83 2.00 1.17
6fvk 3.00 1.17 4.83 3.00 1.83 1.17 0.00 3.00 1.83 1.83
jf8a 2.50 0.67 5.00 3.17 2.50 2.17 1.67 3.83 3.33 1.67
eboo 2.50 -0.33 4.50 1.67 2.00 2.17 0.50 3.50 1.83 1.33
rxk1 2.33 1.50 4.83 4.00 2.50 0.67 0.67 3.17 3.17 2.50
pky2 2.33 2.67 4.00 4.33 1.67 2.50 1.33 4.00 2.83 1.50
djyf 2.33 2.33 4.00 4.00 1.67 1.83 0.17 4.17 2.50 2.33
dhjg 2.33 0.83 4.83 3.33 2.50 2.67 1.83 3.67 2.83 1.00
w6zl 2.17 2.50 4.17 4.50 2.00 2.17 0.17 5.00 3.00 2.83
sfbu 2.17 1.67 4.00 3.50 1.83 1.67 1.83 2.67 2.83 1.00
lj9b 2.17 1.17 4.00 3.00 1.83 1.17 0.83 2.50 2.17 1.33
cvo9 2.00 2.17 4.17 4.33 2.17 1.50 0.50 3.33 2.33 1.83
1cpg 2.00 1.83 4.17 4.00 2.17 1.00 1.50 2.50 3.00 1.50
xxy3 1.83 0.33 4.33 2.83 2.50 1.17 0.17 3.50 2.50 2.33
rkyz 1.83 0.83 4.67 3.67 2.83 0.83 0.33 3.67 3.17 2.83
bo7s 1.83 2.00 4.67 4.83 2.83 1.50 0.83 4.00 3.33 2.50
b0q5 1.67 0.17 4.17 2.67 2.50 1.33 0.50 3.33 2.50 2.00
1md8 1.67 0.83 4.83 4.00 3.17 -0.67 0.00 4.00 4.67 4.67
j957 1.50 2.00 3.17 3.67 1.67 -0.17 0.00 2.67 2.83 2.83
7x0m 1.50 1.50 4.00 4.00 2.50 0.67 1.83 2.50 3.67 1.83
91d9 1.17 0.83 3.67 3.33 2.50 0.33 -0.33 3.17 2.50 2.83
0dqc 1.17 0.17 4.50 3.50 3.33 1.50 0.33 3.50 2.33 2.00
4kb5 1.00 0.00 3.17 2.17 2.17 2.00 0.67 3.83 2.50 1.83
6ofjj 0.33 0.50 4.17 4.33 3.83 1.17 1.33 3.67 3.83 2.50
8qyu -0.17 -0.50 3.83 3.50 4.00 2.00 0.50 4.33 2.83 2.33

Unproductive Condition
dtxl 2.33 0.67 4.33 2.67 2.00 2.00 0.50 3.50 2.00 1.50
gxnb 2.33 1.50 4.50 3.67 2.17 2.00 0.50 3.33 1.83 1.33
k47c 2.33 1.67 4.67 4.00 2.33 2.67 0.50 4.67 2.50 2.00
okga 2.33 -0.67 4.17 1.17 1.83 2.83 0.00 3.83 1.00 1.00
tvlr 2.17 0.83 3.67 2.33 1.50 3.33 0.33 4.33 1.33 1.00
j0wo 2.00 0.50 4.50 3.00 2.50 2.00 0.17 3.00 1.17 1.00
4pst 1.83 -0.50 4.67 2.33 2.83 1.00 -0.17 2.67 1.50 1.67
9ye1 1.83 1.67 4.17 4.00 2.33 2.17 0.83 4.33 3.00 2.17
jhzp 1.83 0.67 4.67 3.50 2.83 2.67 0.17 5.00 2.50 2.33
pbv9 1.83 -0.50 4.33 2.00 2.50 2.67 1.17 4.33 2.83 1.67
ypx4 1.83 0.50 4.67 3.33 2.83 1.33 -0.67 4.83 2.83 3.50
n7oo 1.67 2.00 3.83 4.17 2.17 1.33 0.17 4.67 3.50 3.33
smw5 1.67 1.17 3.83 3.33 2.17 1.50 0.67 3.83 3.00 2.33
vggm 1.67 1.83 3.67 3.83 2.00 2.17 -0.17 4.00 1.67 1.83
1t5n 1.50 0.00 4.17 2.67 2.67 1.00 0.17 2.00 1.17 1.00
6kzk 1.33 -1.67 4.67 1.67 3.33 1.83 -0.50 4.17 1.83 2.33
n0qm 1.33 1.17 4.67 4.50 3.33 1.67 -0.33 3.50 1.50 1.83
ebtl 1.17 0.67 3.50 3.00 2.33 2.33 0.33 4.33 2.33 2.00
g6o7 1.17 0.17 3.83 2.83 2.67 1.67 -0.67 3.50 1.17 1.83
ad7c 1.00 -0.33 4.00 2.67 3.00 1.67 -0.83 4.83 2.33 3.17
j166 1.00 1.33 4.00 4.33 3.00 2.17 0.17 4.00 2.00 1.83
q7to 0.50 0.33 3.33 3.17 2.83 0.33 0.83 3.17 3.67 2.83
m23p 0.00 0.00 5.00 5.00 5.00 1.17 1.17 4.83 4.83 3.67
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calculated this index separately for one-level and two-level test sentences. For one-level test 
sentences, a positive learning index would suggest that a participant rated X1-ka-X2 sentences 
they heard during exposure (Attested) as more consistent with the language than ka-X1-X2 
sentences that violated the structure of the input grammar (Ungrammatical). For two-level 
sentences, a positive learning index would suggest that a participant rated two-level sentences 
whose post-ka positions (X2 and X3) were occupied by words attested in X2 position during 
exposure (Attested) as more consistent with the input language than two-level sentences with 
the -ka morpheme in the wrong position (ungrammatical, e.g., ka-X1-X2-X3-ka). Participants 
were expected to learn the basics of the artificial language regardless of condition, so we do not 
predict Condition to be a significant predictor of the learning index, which should have 
a positive score for both conditions.

(2) Learning index ¼ Mattested � Mungrammatical

Table 3 shows individual learning indices, and Figure 1 shows the mean learning index by input 
condition and embedding level. As shown in the figure, participants not only learned the grammar 
(had a positive learning index on one-level sentences), but also endorsed two-level embedding for 
words attested in both X1 and X2 position during exposure. Our mixed effects regression model 
showed that there is no significant main effect of Condition (χ2(1) = 0.49, p = 0.48) or Level (χ2(1) =  
0.51, p = 0.48), indicating participants in both conditions learn the grammar equally well. However, 
there is a significant interaction between Condition and Level (χ2(1) = 9.50, p = 0.002): Participants in 
the Unproductive condition rated two-level sentences significantly higher (β = 0.74, SE = 0.23, t = 3.17, 
p = 0.003), suggesting that participants were more willing to endorse two-level recursion for attested 
sentences in the Unproductive condition. This may not be surprising, given that fewer X words are 
allowed in both positions in that condition (6 of 12) compared to the Productive condition (10 of 12), 
so they are easier to learn. Therefore, overall, the results on the learning index indicate the participants 
in both conditions have learned the basic pattern of the artificial grammar.

Figure 1. Effects of input condition on learning at each embedding level. Learning index is the difference score of each participant’s 
mean response to attested ungrammatical test sentences. Dots are individual participants and error bars are standard error.
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3.3. Generalization

To determine whether participants formed a productive generalization permitting words attested in X1 
position to also appear in X2 position, we also calculated a generalization index for each participant. 
Here, we took the difference score of a participant’s mean response on unattested test sentences minus 
their mean response on ungrammatical test sentences (see (3)). As with the learning index, we 
calculated the generalization index separately for one- and two-level test sentences. At both levels of 
embedding, a positive generalization index would suggest that a participant rated unattested sentences 
(whose post-ka positions, X2 and X3, were occupied by words never attested in X2 position during 
exposure) as more consistent with the language than ungrammatical sentences that violated the 
structure of the input grammar. For 1-level strings, this generalization index measures how much 
participants would generalize substitutability to unattested words. For 2-level strings, this measures 
how likely participants would accept recursive strings using unattested words based on substitutability 
at level-one. Since the Unproductive condition did not provide enough evidence for productive 
substitutability in the input, we predict the generalization index should be higher in the Productive 
condition than the Unproductive condition at both levels.

(3) Generalization index ¼ Munattested � Mungrammatical

Table 3 and Figure 2 show individual generalization indices by input condition and embedding level. 
A mixed effects regression model showed there is a significant main effect of Condition (χ2(1) = 10.07, 
p = 0.002), which indicates that participants in the Unproductive condition generalized significantly 
less (β = -0.56, SE = 0.17, t = -3.28, p = 0.002). There is also a significant main effect of Level (χ2(1) =  
7.41, p = 0.006), indicating that participants were significantly less likely to generalize at two levels of 
embedding (β = -0.40, SE = 0.15, t = -2.76, p = 0.008). There is no significant interaction between 
Condition and Level (χ2(1) = 0.03, p = 0.86). Therefore, the results suggest that as predicted, partici
pants generalized more in the Productive condition than in the Unproductive condition at both levels 
of embedding. This supports the proposal that speakers can use one-level distributional information to 

Figure 2. Effects of input condition on generalization at each embedding level. Generalization index is the difference score of each 
participant’s mean response to unattested ungrammatical test sentences. Dots are individual participants and error bars are standard 
error.

332 D. LI AND K.D. SCHULER



learn about recursive structures. However, in both conditions, they were less likely to generalize for 
two-level sentences. In the next section, we will discuss this pattern of results in more detail and 
explore how it relates to findings from natural language.

4. Discussion

In this study, we investigated whether speakers can learn recursive structures purely based on the 
productivity of structure substitutability in simple one-level embedding data. The distributional 
learning proposal argues that, for a structure such as X1-ka-X2, if a large enough proportion of 
words are attested in both the X1 and X2 positions in one-level input, then speakers can acquire the 
generalization that the two positions are productively substitutable. That means if a word is attested in 
one position, then it is able to appear in the other position as well, even though it has never been 
attested in the other position in the input. Furthermore, once a structure is productive at one level, 
speakers will learn that it can be embedded to any level. In contrast, if the number of words attested in 
both positions in the input does not reach the productivity threshold, speakers will assume the 
positions are not substitutable and thus the structure cannot be embedded further, except for specific 
items that have been attested in the input. We found that as predicted, participants exposed to 
productive input were significantly more willing to generalize to unattested sentences at both one 
and two levels than participants exposed to unproductive input. Therefore, our results suggest that 
learners can indeed access and utilize the distributional information as the distributional learning 
approach proposes. Together with previous corpus studies which demonstrated the availability and 
reliability of distributional information for structural substitutability in naturalistic data (Grohe et al.  
2021, Li et al. 2021), the findings indicate that the recursivity of a structure can be learned distribu
tionally from language-specific level-one experience. Therefore, overall, the results imply that recur
sivity can be viewed as a productive generalization, which can be acquired through distributional 
learning. This learning mechanism also avoids the logical problem of learning recursive structures, 
since it does not rely on explicit evidence of deep embedding; instead, it predicts that a structure can be 
recursively embedded once it is productive at one level. Therefore, this learning mechanism enables 
speakers to acquire knowledge of infinite embedding from finite input data.

The results of this study add to a body of work that investigates how distributional information can 
be utilized to acquire higher-order linguistic representations (e.g., Reeder et al. 2013, Schuler et al.  
2017). We would like to make it clear that we are not arguing that children acquire the ability of 
recursion through distributional learning. Instead, we are interested in whether learners can use 
distributional information to learn to which specific structures this ability of recursion can be applied, 
which must be learned from language specific experience. Furthermore, the present study is focused 
on what speakers can learn about recursive structures from distributional information alone, and our 
results indicate distributional information itself already allows learners to distinguish structures that 
can be recursively embedded from restricted structures. However, we do not deny the important role 
of other factors, such as the well-recorded semantic, pragmatic, and phonetic constraints for the 
English of-genitive (e.g., Rosenbach 2014), in the acquisition of recursive structures. Rather, we 
consider this work a first step toward future investigations into how learners coordinate and exploit 
different cues to learn which structures are recursive and the constraints on this recursion in the 
language they are acquiring. And we agree that other tests of the full range of the distributional 
learning proposal are welcome and necessary.

One apparent difference between the distributional learning proposal and the current results is that 
while the proposal predicts that learners will learn that infinite embedding is allowed once there is 
sufficient evidence for substitutability in one-level input, our participants were less likely to generalize 
at two-level even in the Productive condition. Indeed, we agree that in principle, the distributional 
learning account would predict a categorical difference in linguistic knowledge: The unattested strings 
of both embedding levels in the Productive condition should be completely good, while the unattested 
strings of both embedding levels in the Unproductive condition should be completely bad. While the 
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distributional learning proposal predicts perfect linguistic ability, participants’ judgement in experi
ments are naturally imperfect, and influenced by processing factors. Indeed, even experiments with 
natural language have found that native speakers experience difficulty processing grammatical but 
recursively embedded structures, and their ratings for the structures get lower with increasing levels of 
embeddings. For instance, in Christiansen & MacDonald’s (2009) study, participants rated different 
recursive structures, such as PPs, possessives and central embeddings, and for all the structures, deeper 
embeddings were rated significantly worse. Further, the pattern to be learned in the study is complex, 
and the duration of the exposure phase is brief. That is, our participants are new learners of the 
artificial language. As such we did not expect our learners to be perfect generalizers, even in the 
Productive condition. Instead, the crucial finding is as predicted by the distribution learning proposal, 
participants in the productive condition do generalize to both one- and two-level sentences, and they 
do so significantly more strongly than those in the Unproductive condition. Future studies should try 
different tasks such as production or forced alternative choice tasks to further investigate the nature of 
learners’ linguistic knowledge.

Another important question is whether the learners in our experiments acquired a hierarchical 
structure from the artificial language input or if they simply acquired the linear order of strings. 
Generalizing the X1-ka-X2 structure to X1-ka-X2-ka-X3 involves tail-recursion, which, in the absence of 
a referential world, could be accomplished with simple iteration. We agree that our design does not 
rule out the possibility that learners may not have acquired a hierarchical structure from our language 
input. However, some artificial language learning studies have found that if human learners can apply 
certain distributional learning strategy to linear strings, they are also able to apply it to hierarchical 
structures (Thompson & Newport 2007, Takahashi & Lidz 2008). Therefore, even though what our 
participants have learned is a linear structure, we think they are also likely to learn hierarchical 
structures with the same mechanism. We plan to test this by constructing an explicitly hierarchical 
language as in Thompson & Newport (2007) and Takahashi & Lidz (2008).

Another possible interpretation of the results is that participants were learning categories: In the 
Productive condition, they learned all the words belong to one productive category, whereas in the 
Unproductive condition, they learned the words belong to different categories and are thus unin
terchangeable. We suggest this interpretation is not necessarily inconsistent with the distributional 
learning proposal. For example, the corpus study in Li et al. (2021) showed that for recursive 
possessive structures in natural languages, all the words appearing in either position can be viewed 
as belonging to one productive category; in contrast, for restricted structures, the words which can be 
used in certain position do form semantic subcategories. For instance, for the restricted possessive 
structure X1’s-X2 in German, words that are attested in X1 are limited to close kinship terms. We will 
examine the exact relation and distinction between categories and recursion in future research. 
Another future direction is the role of the structural representation in the distributional learning of 
recursive structures. In particular, a requirement by the distributional learning proposal is that the 
substitutable element must be the head of the structure, whereas the current artificial language did not 
explicitly provide this information. However, given the word length (words in X1 and X2 positions 
tend to be longer than ka), stress (X1 and X2 words are stressed, ka is never stressed) and word number 
(there are 12 X words but only 1 ka word) in the current artificial language, we think it is likely that 
participants will treat X as the head of the structure and ka as a function word, since those cues also 
apply in natural languages. Moreover, in ongoing work, we are explicitly testing the role of the 
structural representation by explicitly approximating the distribution of heads in the new artificial 
languages. Preliminary results suggest that both substitutability and knowledge of the head are 
necessary for the acquisition of recursion.

Finally, the present experiments have examined adult participants. However, it is unknown 
whether young learners can also fully utilize such distributional information, given their more limited 
cognitive abilities. Previous studies have suggested that children and even infants can learn gramma
tical rules through distributional learning (e.g., Marcus et al. 1999, Emond & Shi 2021), but the rule to 
be learned in this study is more abstract than those investigated before. In addition, some studies 
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suggested that distributional learning is an ability available from birth (e.g., Gervain et al. 2008, 
Teinonen et al. 2009, Aslin 2017). Therefore, it is necessary for future research to examine whether 
young learners exploit the distributional cues in the same way as the adults in the present study, and at 
what age this distributional learning is available.

Acknowledgments

We are grateful to the participants in our experiment; to Charles Yang and members of the Child Language Lab and the 
Language and Cognition Lab at University of Pennsylvania for helpful discussion; and to three anonymous reviewers 
whose comments improved the paper.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding

Funding for this work was provided by the University of Pennsylvania to K. Schuler.

ORCID

Daoxin Li http://orcid.org/0009-0004-6846-9689
Kathryn D. Schuler http://orcid.org/0000-0003-2962-731X

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Adger, David. 2003. Core syntax. Oxford: Oxford University Press.
Aronoff, Mark. 1976. Word formation in generative grammar. Cambridge, MA: MIT Press.
Aslin, Richard N. 2017. Statistical learning: A powerful mechanism that operates by mere exposure. WIREs Cognitive 

Science 8. e1373.
Baayen, Harald & Rochelle Lieber. 1991. Productivity and English derivation: A corpus-based study. Linguistics 29(5). 

801–843.
Biber, Douglas, Stig Johansson, Geoffrey Leech, Susan Conrad & Edward Finegan. 1999. Longman grammar of spoken 

and written English. London: Longman.
Braine, Martin D. S. 1987. What is learned in acquiring word classes – A step toward an acquisition theory. In 

Brian MacWhinney (ed.), Mechanisms of language acquisition, 65–87. Mahwah, NJ: Lawrence Erlbaum.
Bybee, Joan. 1995. Regular morphology and the lexicon. Language and Cognitive Processes 10(5). 425–455.
Christiansen, Mortan H. & Maryellen C. MacDonald. 2009. A usage-based approach to recursion in sentence processing. 

Language Learning 59. 126–161.
Emond, Emeryse, & Rushen Shi. 2021. Infants’ rule generalization is governed by the Tolerance Principle. In 

Danielle Dionne & Lee-Ann Vidal Covas (eds.), Proceedings of the 45th annual Boston University Conference on 
Language Development [BUCLD 45], 191–204. Somerville, MA: Cascadilla Press.

Gervain, Judit, Francesco Macagno, Silvia Cogoi, Marcela Pena & Jacques Mehler. 2008. The neonate brain detects 
speech structure. Proceedings of the National Academy of Sciences of the United States of America [PNAS] 105. 
14222–14227.

Giblin, Iain, Peng Zhou, Cory Bill, Jiawei Shi & Stephen Crain. 2019. The Spontaneous eMERGEnce of recursion in child 
language. In Megan M. Brown & Brady Dailey (eds.), Proceedings of the 43rd annual Boston University Conference on 
Language Development [BUCLD 43], 270–285. Somerville, MA: Cascadilla Press.

Grohe, Lydia, Petra Schulz & Charles Yang. 2021. How to learn recursive rules: Productivity of prenominal adjective 
stacking in English and German. Paper presented at the 9th biannual conference on Generative Approaches to 
Language Acquisition – North America, May 7-9, University of Iceland, Reykjavík.

LANGUAGE ACQUISITION 335



Hartmann, Katharina & Malte Zimmermann. 2002. Syntactic and semantic adnominal genitive. In Claudia Maienborn 
(ed.), A-symmetrien – A-symmetries, 171–202. Tübingen: Stauffenburg.

Hauser, Marc D., Noam Chomsky & W. Tecumseh Fitch. 2002. The faculty of language: What is it, who has it, and how 
did it evolve? Science 298(5598). 1569–1579.

Karlsson, Fred. 2007. Constraints on multiple center-embedding of clauses. Journal of Linguist 43. 365–392.
Levi, Judith. N. 1978. The syntax and semantics of complex nominals. Cambridge, MA: Academic Press.
Li, Daoxin, Lydia Grohe, Petra Schulz & Charles Yang. 2021. The distributional learning of recursive structures. In 

Danielle Dionne & Lee-Ann Vidal Covas (eds.), Proceedings of the 45th annual Boston University Conference on 
Language Development [BUCLD 45], 471–485. Somerville, MA: Cascadilla Press.

Li, Daoxin & Kathryn Schuler. 2021. Distributional learning of recursive structures. In Proceedings of the 43rd Annual 
Conference of the Cognitive Science Society [CogSci 2021], 1437-1443.

Li, Daoxin & Charles Yang. In prep. Productivity and the distributional learning of recursive structures.
Li, Daoxin, Xiaolu Yang, Tom Roeper, Michael Wilson, Rong Yin, Jaieun Kim, Emma Merritt, Diego Lopez & 

Austin Tero. 2020. Acquisition of recursion in child Mandarin. In Megan M. Brown & Alexandra Kohut (eds.), 
Proceedings of the 44th annual Boston University Conference on Language Development [BUCLD 44], 294–307. 
Somerville, MA: Cascadilla Press.

MacWhinney, Brian. 2000. The CHILDES project. Mahwah, NJ: Lawrence Erlbaum.
Maratsos, Michael P. & Chalkley, M. A. 1980. The internal language of children’s syntax: The nature and ontogenesis of 

syntactic categories. In Keith Nelson (ed.), Children’s language (Vol. 2), 127–214. New York: Gardner Press.
Marcus, Gary F., S. Vijayan, S. Bandi Rao & P. M. Vishton. 1999. Rule learning by seven-month-old infants. Science 283 

(5398). 77–80.
Pérez-Leroux, Ana, Tyler Peterson, Anny Patricia Castilla-Earls, Susana Béjar, Diane Massam & Yves Roberge. 2018. 

The acquisition of recursive modification in NPs. Language 94(2). 332–359.
Pérez-Leroux, Ana, Yves Roberge, Alex Lowles & Petra Schulz. 2022. Structural diversity does not affect the acquisition 

of recursion: The case of possession in German. Language Acquisition 29(1). 54–78.
Pinker, Steven. 1994. The language instinct. New York: William Morrow and Company.
Reeder, Patricia A., Elissa L Newport & Richard N. Aslin. 2013. From shared contexts to syntactic categories: The role of 

distributional information in learning linguistic form-classes. Cognitive Psychology 66(1). 30–54.
Roeper, Tom. 2011. The acquisition of recursion: How formalism articulates the child’s path. Biolinguistics 5(1–2). 

57–86.
Roeper, Tom, & William Snyder. 2005. Language learnability and the forms of recursion. In Anne M. DiScullo (ed.), UG 

and external systems: Language, brain and computation, 155-169. Amsterdam: John Benjamins.
Rosenbach, Anette. 2014. English genitive variation – The state of the art. English Language and Linguistics 18. 215–262.
Roth, Froma P. 1984. Accelerating language learning in young children. Child Language 11. 89–107.
Ruskin, David. 2014. Cognitive influences on the evolution of new languages. Rochester, NY: University of Rochester 

dissertation.
Schuler, Kathryn D., Patricia A. Reeder, Elissa L. Newport & Richard N. Aslin. 2017. The effect of Zipfian frequency 

variations on category formation in adult artificial language learning. Language Learning and Development 13. 
357–374.

Takahashi, Eri & Jeffrey Lidz. 2008. Beyond statistical learning in syntax. In A. Gavarró & M. J. Freitas (eds.), Proceedings 
of GALA 2007: Language Acquisition and Development, 444–454. Cambridge, UK: Cambridge Sch.

Teinonen, Tuomas, Vineta Fellman, Risto Naatanen, Paavo Alku & Minna Huotilainen. 2009. Statistical language 
learning in neonates revealed by event-related brain potentials. BMC Neuroscience 10. 21.

Thompson, Susan P. & Elissa L. Newport. 2007. Statistical learning of syntax: The role of transitional probability. 
Language Learning and Development 3(1). 1–42.

Yang, Charles. 2016. The price of linguistic productivity. Cambridge, MA: MIT Press.

336 D. LI AND K.D. SCHULER


	Abstract
	1. Introduction
	2. Method<xref ref-type="fn" rid="fn0006"><sup>6</sup></xref><fn id="fn0006" fn-type="footnote"><label><sup>6</sup></label>
<p>An earlier version of this experiment was reported in the Proceedings of the 43rd Annual Meeting of the Cognitive Science Society (Li & Schuler <xref ref-type="bibr" rid="cit0018">2021</xref>).</p></fn>
	2.1. Participants
	2.2. Stimuli
	2.3. Procedure

	3. Results
	3.1. Raw Scores
	3.2. Learning
	3.3. Generalization

	4. Discussion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	Data availability statement
	References

