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1. Introduction

 

Recursion in linguistics refers to infinite self-embedding of a particular type 

of linguistic element or grammatical structure. The ability for recursion is a 

crucial part of the language faculty and is considered universally available (e.g., 

Berwick & Chomsky, 2017). However, languages differ regarding the syntactic 

domains of recursive structures. For instance, the genitive -s is much more 

restricted in German (1) than in English (2), (Pérez-Leroux, Roberge, Lowles & 

Schulz, 2022). Therefore, it must be learned from language-specific experience 

whether a structure allows recursion. So how can learners learn whether a 

structure can be recursively embedded or not? 

 

(1) *das Manns Nachbars   Buch 

the man’s   neighbor’s book 

‘the man’s neighbor’s book’ 

(2) the man’s neighbor’s book 
 

In the present study, we examine the role of structural representation in the 

distributional learning of recursive structures. In Section 2, we introduce the 

distributional learning proposal of recursive structures (Grohe, Schulz & Yang, 

2021; Li, Grohe, Schulz & Yang, 2021), which argues that recursion can be 

learned from the distributional information of structural substitutability. We 

present experimental findings that support the proposal, showing that learners can 

integrate syntactic knowledge of the head in order to distributionally acquire 

recursion. Specifically, we conducted an artificial language learning experiment 

introduced in Section 3. Participants learned one of the two artificial languages 

which both satisfied the substitutability requirement but had different heads. 

Section 4 reported the results: As predicted, cues of both structural substitutability 

and the head are needed for the participants to license recursion. Section 5 

concludes the paper and discusses the implications.  
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2. The distributional learning proposal 

 

In this section we describe a recent proposal of learning recursive structures 

(Grohe, Schulz & Yang, 2021; Li, et al., 2021), which relies on distributional 

learning (e.g., Maratsos & Chalkley, 1980; Braine, 1987). The proposal suggests 

that recursion can be viewed as structural substitutability: a structure such as X1’s-

X2 is recursive if position X1 and X2 are productively substitutable, i.e., any word 

that appears in one of those positions can also be used in the other position. The 

proposal further claims that children can learn this structural property of 

substitutability if there are sufficient words attested in both positions in their early 

language input. Corpus studies on a variety of structures across languages have 

confirmed that such distributional information is available in simple child-

directed speech (English and German adjectives in Grohe, Schulz & Yang (2021); 

possessives in English, Mandarin and German in Li et al. (2021); English nominal 

compounds in Yang (2022)). Moreover, a previous artificial language learning 

experiment demonstrated that learners can indeed use this distributional 

information to determine which structures allow recursion: Li and Schuler (2021) 

found that adult participants rated recursive strings (X1-ka-X2-ka-X3) in an 

artificial language significantly higher when X1 and X2 positions were 

productively substitutable in their exposure to the artificial language. 

However, structural substitutability itself does not necessarily lead to 

recursion. There are structures that exhibit substitutability in linear position but 

do not allow recursion. For example, the two NPs in NP1-V-NP2 in English can 

be substitutable, but the structure cannot be recursively embedded (e.g., ‘*dogs 

chase cats chase rats…’). How does a distributional learner avoid such wrong 

generalizations? In the distributional learning proposal, an important prerequisite 

is that the substitutable element must be the head of the structure, since the ‘self-

embedding’ definition of recursion is only satisfied in that case, e.g., N2 is the 

head in N1’s-N2, but neither NP is the head in NP1-V-NP2. However, it is unknown 

whether learners will indeed utilize this head information during the distributional 

learning of recursive structures. In order to test this, we exposed participants to 

two languages that both had structural substitutability in linear position but 

differed in whether the substitutable element was the head. The experiment is 

described in the next section. 

 

3. Methods  

3.1. Participants 

 

 Participants were 50 adult native English speakers with typical hearing and 

vision (or corrected vision). All participants were recruited and run online via 

Prolific Academic (www.prolific.ac) and paid $9/hour as compensation. The 50 

participants were evenly assigned to two language conditions, A-head language 

(age = 31.2, range = 20-46) and B-head language (age = 29.5, range = 20-45). 
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3.2. Stimuli 

 

We designed two artificial languages, namely the A-head language and the 

B-head language. The two languages were constructed such that they can both 

form one-level A1-B-A2 strings, but the head of the A1-B-A2 string is different in 

the two languages: it is A, in particular A2, in the A-head language, and is B in the 

other language (Table 1). We approximated the distributional character of heads 

by implementing the rules that the head of the phrase obligatorily appears 

whenever the phrase is present, and that non-head elements are optional. By 

implementing those rules, we do not mean that any non-head element in any 

language must be omittable. There could be language specific rules that 

complicates those fundamental rules. Neither do we mean those are the only cues 

in natural languages for learners to identify the head. We choose those rules 

because they are key features that define heads in theoretical work on natural 

languages, and they have been proven useful for learners to identify the head in 

distributional learning studies (Fetch, 2020).  Therefore, the two languages allow 

different linear strings as shown in Table 1: For one-word strings, the single word 

must be the head; for two-word strings, the hierarchy and the head determined 

that AA and BA but not AB are possible in the A-head language, whereas the B-

head language allows BA and AB but not AA. 

 

Table 1. Design of two languages. 

  A-head language B-head language 

structure 

 
 

one-word A, *B *A, B 

two-word AA, BA, *AB *AA, BA, AB 

 

There are 12 category-A words and 1 category-B word in each language. To 

help participants learn the distinction between head and non-head elements, we 

used bi-syllabic words for the head and mono-syllabic words for the non-head. 

All the nonsense words conformed to English phonotactics and are provided in 

Table 2-3 (adapted from Ruskin (2014)).  For the A1-B-A2 structure in both 

languages, A1 and A2 are productively substitutable: All of the 12 different words 

were attested in A1 position, and 9 of them were attested in A2 position, clearing 

the productivity threshold predicted by common measures of productivity (e.g., 

Bybee, 1995; Yang, 2016). If learners indeed learn recursive structures as 

predicted by the proposal, i.e., they learn a structure can be recursively embedded 

if the head positions are substitutable, then they should license recursion (A1-B-

A2-B-A3) in the A-head language but not in the B-head language. 
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For both languages, we constructed a 144-string exposure corpus (Table 2-

3). In specific, there were three different types of exposure strings: one-word 

strings, two-word strings, and A1-B-A2 strings. The one-word string for the B-head 

language was the single category-B word, which was repeated 36 times; for the 

A-head language, that included each of the 12 category-A words repeated 3 times, 

thus also making 36 strings in total. The two-word strings for the A-head language 

included AA strings and BA strings, and for the B-head language included AB 

strings and BA strings. For both languages, the BA strings consisted of 3 

repetitions of each of the 12 category-A words following the category-B word. 

The AB strings in the B-head languages consisted of 3 repetitions of each of the 

12 category-A words preceding the category-B word. The 36 AA strings in the A-

head language were selected from all the possible AA combinations such that each 

category-A word appeared in A1 position three times and appeared in A2 position 

three times and A1 and A2 were not occupied by the same word. There were also 

36 A1-B-A2 strings for each language. They were selected from all possible A1-B-

A2 combinations such that all 12 category-A words were attested in A1 position 3 

times; 9 category-A words were attested in A2 position 4 times; A1 and A2 were 

occupied by two different words. The 144 exposure strings were divided into three 

blocks: each block contained 12 one-word strings, 12 AA or AB strings, 12 BA 

strings, and 12 A1-B-A2 strings. The frequency of each word was balanced across 

three blocks. 

 

Table 2. The distribution of category-A words in the exposure corpus and 

word frequency in each position in the A-head language. 

Word Freq 

One-

word 
Two-word A1-B-A2 

A 
A1 in 

AA 

A2 in 

AA 

A in 

BA 
A1 A2 

nogi 19 3 3 3 3 3 4 

tesa 19 3 3 3 3 3 4 

waso 19 3 3 3 3 3 4 

mito 19 3 3 3 3 3 4 

bila 19 3 3 3 3 3 4 

sane 19 3 3 3 3 3 4 

sito 19 3 3 3 3 3 4 

kosi 19 3 3 3 3 3 4 

kewa 19 3 3 3 3 3 4 

seta 15 3 3 3 3 3 0 

sasa 15 3 3 3 3 3 0 

tana 15 3 3 3 3 3 0 

The category-B word in the A-head language is ka. 
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Table 3. The distribution of category-A words in the exposure corpus and 

word frequency in each position in the B-head language from Exp 2. 

Word Freq 

One-

word 
Two-word A1-B-A2 

B A in AB A in BA A1 A2 

ka 13 0 3 3 3 4 

bo 13 0 3 3 3 4 

ru 13 0 3 3 3 4 

ni 13 0 3 3 3 4 

fei 13 0 3 3 3 4 

pao 13 0 3 3 3 4 

sa 13 0 3 3 3 4 

mo 13 0 3 3 3 4 

gu 13 0 3 3 3 4 

di 9 0 3 3 3 0 

tei 9 0 3 3 3 0 

lao 9 0 3 3 3 0 

The category-B word in the B-head language is nogi. 

 

The test strings included two-word strings to test participants’ knowledge of 

the hierarchical structure (hereby zero-level strings), one-level embedded strings 

(A1-B-A2) to test their knowledge of substitutability, and two-level strings (A1-B-

A2-B-A3) to test their knowledge of recursion (Table 4). For zero-level strings, 

participants in both conditions would be tested on 6 AB strings, 6 BA strings, and 

6 AA strings. All the category-A words used for those two-word test strings were 

among the 9 category-A words that were attested in both A1 and A2 positions in 

A1-B-A2. For participants in each condition, two types of zero-level strings would 

be attested, one type would be ungrammatical. For example, for participants in 

the A-head language condition, as shown in Table 4, AA strings (e.g., sito-mito) 

and BA strings (e.g., ka-kewa) were attested, while AB strings (e.g., tesa-ka) 

would be ungrammatical. One-level strings tested participant’s knowledge of 

substitutability, and two-level strings tested their knowledge of recursion. For 

both one- and two-level strings, there were attested strings, unattested strings, and 

ungrammatical strings. For one-level strings, the attested strings were strings that 

had been heard during exposure phase. For example, in Table 4, nogi-ka-mito is 

a string selected from the exposure corpus. Unattested strings were strings where 

the A2 position was occupied a word that was never attested in A2 position during 

exposure. For instance, tana has never appeared after ka in the A1-B-A2 structure 

in the exposure corpus. Ungrammatical strings had the word order A1-A2-B, which 

was not allowed in either of the two languages. For two-level strings, the attested 

strings were combinations of two one-levels strings that were attested during 

exposure phase: e.g., nogi-ka-mito and mito-ka-tesa are both selected from the 
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exposure corpus. In unattested strings, the A2 and A3 positions were filled by 

words that never appeared after the category-B word during exposure, such as 

seta and sasa in Table 4. The ungrammatical strings were A1-A2-A3-B-B strings, 

which were impossible for both grammars. There were 6 strings of each type at 

each level, leading to 54 test strings in total.  

All exposure and test strings were generated by a female voice using an 

online speech synthesizer, Natural Reader (https://www.naturalreaders.com). We 

generated each unique string separately such that all strings were generated with 

the same speed, volume, and pitch. 

 
Table 4. Sample test strings in A-head language condition. 

Type Zero-level One-level Two-level 

attested sito-mito, ka-kewa nogi-ka-mito nogi-ka-mito-ka-tesa 

unattested  bila-ka-tana waso-ka-seta-ka-sasa 

ungrammatical tesa-ka nogi-tesa-ka nogi-waso-bila-ka-ka 

 

3.3. Procedure 

 

The experiment consisted of two phases: exposure, in which participants 

were exposed to the artificial language, and test, in which participants were tested 

on how well they learned the language and what generalization they have formed. 

In the exposure phase, participants were told they would hear strings from a new 

language, and that they need to pay careful attention to the strings, because they 

would be tested on their knowledge of the language later. During exposure, 

participants heard two repetitions of the exposure corpus presented in random 

order as they viewed a still, unrelated nature scene (i.e., there was no 

accompanying referential world). There was 1.5s of silence between each string, 

and participants were offered a break after each block of 36 strings to prevent task 

fatigue. In order to make sure that the participants were paying attention, other 

sounds were randomly dispersed among the linguistic strings, such as bird 

chirping sounds, and participants were later asked how many such sounds they 

heard. The random sounds occurred only rarely so as not to interfere with the 

learning of the language (i.e., 2 or 3 times per block). All participants answered 

those questions correctly. 

Once the exposure phase was completed, the test phase began. On each test 

trial, participants heard a test string, and were asked to rate the acceptability of 

the string on a scale of 1 to 5. Participants were told to decide if those strings came 

from the language they had just heard (e.g., whether they think a native speaker 

of the language would have said that particular string). 1 meant the string was 

definitely not from the language; 2 meant the string may not have come from the 

language; 3 meant the string may or may not have come from the language; 4 

meant the string may have come from the language; 5 meant the string definitely 

came from the language. The test strings were delivered in random order. 
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4. Results 

 

Next, we present the results for zero-level, one-level and two-level test 

strings. For one- and two-level strings, we computed a learning index and a 

generalization index to measure how much the participants learned and 

generalized. The learning index is the difference score of a participant’s mean 

response on Attested test strings minus their mean response on Ungrammatical 

test strings, (3), and the generalization index is the difference score of a 

participant’s mean response on Unattested test strings minus their mean response 

on Ungrammatical test strings, (4). Those indices were calculated separately for 

one-level and two-level test strings. The predictions are as below. First, for zero-

level strings, if participants have learned the correct hierarchical structure, then 

they are predicted to rate attested strings in their language (i.e., AA and BA in A-

head language, AB and BA in B-head language) significantly higher than the 

ungrammatical strings (i.e., AB in A-head language, AA in B-head language). 

Next, for one-level strings, participants in both conditions should learn the A1-B-

A2 structure and the substitutability of A1 and A2. Therefore, there should be no 

difference between conditions in either the learning index or the generalization 

index. In contrast, for two-level strings, participants from the A-head language 

condition are predicted to rate both attested and unattested strings higher than 

participants from the B-head language condition: although participants from the 

B-head language conditions have heard examples analogous to ‘dogs chase cats’ 

and ‘cats chase rats’, they would not be willing to accept ‘dogs chase cats chase 

rats’ because of the head; neither would they be willing to allow recursion for 

unattested words although they have learned substitutability. 

 
(3) Learning index = Mattested - Mungrammatical 
(4) Generalization index = Munattested - Mungrammatical 
 

4.1. Zero-level 

 

The zero-level data are shown in Table 5. A mixed-effects regression model 

showed a significant main effect of test string Type (attested vs. ungrammatical) 

(χ2(1) = 587.42, p < 0.001): Ungrammatical strings were rated significantly lower 

than attested strings (β = -2.20, SE = 0.06, t = -34.19, p < 0.001). Post-hoc analyses 

suggested this holds true in both language conditions (A-head language: β =1.04, 

SE = 0.09, t = 11.41, p < 0.001; B-head language: β = 3.37, SE = 0.09, t = 36.94, 

p < 0.001). Therefore, people from both conditions have learned the correct 

hierarchical structure of the language. The model also revealed a significant main 

effect of Condition (χ2(1) = 4.02, p = 0.045) and a significant interaction between 

Condition and Type (χ2(1) = 276.43, p < 0.001), indicating that ungrammatical 

strings were rated higher in the A-head language condition (β = 2.33, SE = 0.13, 

t = 18.05, p < 0.001). Post-hoc analyses confirmed that participants in the B-head 

language condition rated ungrammatical strings (i.e., AA) lower than those in the 

A-head language condition (i.e., AB) (β = -1.83, SE = 0.16, t = -11.26, p < 0.001), 
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which led to the significant main effect of Condition. This result was expected, 

because the ungrammatical strings in the B-head language were indeed worse than 

those in the A-head language: The ungrammatical strings in the B-head language 

condition were AA, which did not contain the head at all; in contrast, the 

ungrammatical strings in the A-head language condition, AB, did contain a 

category A-word, so it is reasonable that participants from the B-head language 

condition would rate their ungrammatical strings lower. Post-hoc analyses also 

showed that grammatical strings in the B-head language condition (i.e., AB and 

BA) were rated higher than those in the A-head language condition (i.e., AA and 

BA) (β = 0.50, SE = 0.14, t = 3.47, p = 0.001). Further examination showed that 

this can be attributed to AA strings: while BA strings in both conditions and AB 

strings in the B-head language condition were rated similarly, AA strings in the 

A-head language condition were rated lower than them. This can be explained by 

the fact that while all combinations for AB and BA strings were attested during the 

exposure phase, there were many possible AA strings (144) and only a small 

proportion of them (36) were selected for the exposure corpus. Therefore, it is 

expected that participants would be less certain about the judgments of AA strings 

and rate them lower than the other grammatical strings.  

 

Table 5. Mean rating scores for zero-level test strings. Standard errors are 

in parentheses. Ungrammatical strings are in italics. 

Condition AA AB BA 

A-head 3.88 (0.27) 3.11 (0.22) 4.43 (0.20) 

B-head 1.29 (0.15) 4.75(0.15) 4.56 (0.18) 

 

4.2. One-level 

 

Figure 1 shows the results for one-level test strings. Mixed-effects regression 

demonstrated that test Type (learning vs. generalization) (χ2(1) = 9.38, p = 0.002) 

but neither Condition (χ2(1) = 0.72, p = 0.40) nor the interaction of Type and 

Condition (χ2(1) = 1.10, p = 0.29) was a significant predictor of the index. In 

specific, post-hoc analyses revealed that there is no significant difference between 

two conditions for either the learning index (β = -0.13, SE = 0.27, t = -0.48, p = 

0.63) or the generalization index (β = -0.29, SE = 0.27, t = -1.11, p = 0.27). 

Therefore, this suggests that participants in both conditions have learned the A1-

B-A2 structure, and have generalized the rule of substitutability of A1 and A2 to 

similar extent. The significant main effect of test Type showed that the 

generalization index was generally lower than the learning index, suggesting 

participants were more willing to accept attested strings than unattested strings. 
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learning generalization

A-head B-head A-head B-head
-2

-1

0

1

2

3

Condition

In
de

x

Condition
A-head

B-head

Level1

Figure 1. Effects of input condition on learning and generalization at level 

one. Dots are individual participants and error bars are standard error. 

 

4.3. Two-level 

 

Results at level-two are shown in Figure 2. Mixed-effects regression showed 

that both Condition (χ2(1) = 5.04, p = 0.025) and test Type (χ2(1) = 12.46, p < 

0.001) but not their interaction (χ2(1) = 1.66, p = 0.20) were significant predictors 

of the index. The significant main effect of Condition suggested that the learning 

indices were higher in the A-head language condition than in the B-head language 

condition (β = 0.74, SE = 0.33, t = 2.26, p = 0.03). In particular, post-hoc analyses 

confirmed that the learning index in the B-head language was marginally 

significantly lower than that in the A-head language (β = -0.62, SE = 0.34, t =

-1.81, p = 0.0765), and the generalization index was significantly lower (β = -0.87,

SE = 0.34, t = -2.52, p = 0.01). Therefore, although participants from both 

conditions have learned substitutability in one-level strings, participants from the 

A-head condition were more willing to accept recursively embedded strings for 

both attested and unattested words. Finally, similar to one-level data, there is also 

a significant main effect of Type, suggesting the generalization index was lower 

than the learning index, though post-hoc analyses reported that the learning and 
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generalization index only differed significantly in the B-head language condition 

(β = 0.49, SE = 0.14, t = 3.55, p < 0.001).  

learning generalization

A-head B-head A-head B-head

-2

0

2

4

Condition

In
de

x

Condition
A-head

B-head

Level2

Figure 2. Effects of input condition on learning and generalization at level 

two. Dots are individual participants and error bars are standard error. 

 

5. General discussion  

 

In summary, through an artificial language learning experiment, we 

investigated how learners use distributional information about the productivity of 

structural substitutability to learn recursive structures based on syntactic 

knowledge of the head of the structure. According to the distributional learning 

proposal, a prerequisite for structural substitutability to lead to recursion is that 

the substitutable element must be the head of the structure, because only in that 

case will self-embedding be involved, which is the definition of recursion. To test 

the proposal, we exposed participants to two different artificial languages. In both 

languages, the A1 and A2 positions in A1-B-A2 are productively substitutable, but 

participants could also learn from distributional cues that the head of the structure 

is A in one language but is B in the other language. At test, we found that as 

predicted, although participants in both conditions learned substitutability and 

generalized the rule to unattested words in one-level strings, in the B-head 
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language condition, where recursion was not expected, participants were 

significantly less likely to accept embedded strings for either attested words or 

unattested words, thus indicating that learners can integrate knowledge of the 

syntactic structure to distributionally acquire recursion. 

The current results showed that learners can use purely distributional 

information to learn the head of a linguistic structure, and integrate this 

knowledge with other distributional information to acquire complex rules such as 

recursion. This finding adds to a body of work that investigates how distributional 

information can be utilized to acquire higher-order linguistic representations (e.g., 

Thompson & Newport, 2007; Takahashi & Lidz, 2008; Reeder, Newport, & 

Aslin, 2013; Schuler, Reeder, Newport, & Aslin, 2017; Fetch, 2020). By 

emphasizing the role of formal learning, though, we do not intend to deny the role 

of other factors in learning the head and learning recursion. And as we pointed 

out earlier, there may be other distributional cues for the head in natural languages 

in addition to the ones we applied in our current design. The current study only 

focuses on the role of specific distribution information, but it is worthwhile for 

future studies to investigate how different types of cues are coordinated and 

exploited by the learner. 

For one- and two-level test strings, besides the predicted effect of condition, 

we also observed a significant effect of test string type, which indicates that 

participants tended to rate attested strings higher than unattested strings. It is true 

that ideally one might expect unattested strings to receive the same scores as 

attested strings if learners have completely acquired the generalization. However, 

given the complexity of the linguistic rules to be learned and the short duration of 

the exposure phase, we do not find this result surprising. In ongoing work, we 

plan to lengthen the exposure phase so that participants will have longer time and 

thus more opportunity to learn the rules. 

Finally, the present experiment was conducted with adult participants. 

However, it is unknown whether younger learners can also fully utilize such 

distributional information, given their more limited cognitive abilities. Previous 

studies have suggested that children and even infants can learn grammatical rules 

through distributional learning (e.g., Emond & Shi, 2020; Marcus, Vijayan, Rao, 

& Vishton, 1999), but the rule to be learned in this study is more abstract than 

those investigated before. In addition, some studies suggested that distributional 

learning is an ability available from birth (e.g., Grevain, Macagno, Cogoi, Pena, 

& Mehler, 2008; Teinonen, Fellman, Naatanen, Alku, & Huotilainen, 2009; Aslin, 

2017). Therefore, it is necessary for future research to examine whether young 

learners exploit the distributional cues in the same way as the adults in the present 

study, and at what age this distributional learning is available. 
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