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Abstract
In ‘Against Stored Abstractions,’ Ambridge uses neural and computational evidence to 
make his case against abstract representations. He argues that storing only exemplars 
is more parsimonious – why bother with abstraction when exemplar models with on-
the-fly calculation can do everything abstracting models can and more – and implies 
that his view is well supported by neuroscience and computer science. We argue that 
there is substantial neural, experimental, and computational evidence to the contrary: 
while both brains and machines can store exemplars, forming categories and storing 
abstractions is a fundamental part of what they do.
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In his article ‘Against Stored Abstractions,’ Ambridge (2020) uses neural and computa-
tional evidence to make his case against abstract representations. His argument is that 
storing only exemplars is more parsimonious – why bother with abstraction when exem-
plar models with on-the-fly calculation can do everything abstracting models can and 
more – and he implies that his view is well supported by neuroscience and computer 
science. In this commentary we argue that there is substantial neural, experimental, and 
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computational evidence to the contrary: while both brains and machines can store exem-
plars, forming categories and storing abstractions is a fundamental part of what they do.

Ambridge urges readers not to reject his radical exemplar theory simply because it is 
at odds with the declarative-procedural model of memory. But the declarative-procedural 
model is far from the only evidence in favor of abstraction in the brain. To the contrary, 
a large body of work at all levels of neuroscience – from individual neurons up to neuro-
imaging data – suggests the brain represents both abstractions and exemplars in a number 
of ways (e.g., see Seger & Miller, 2010 for a review). For example, neuroscientists have 
observed that some ensembles of neurons respond to specific exemplars while others 
respond at the category level. Freedman and colleagues (2003) recorded neurons in two 
regions – prefrontal cortex and inferior temporal cortex – as monkeys performed a task 
in which they categorized cats and dogs morphed along a continuum. While the inferior 
temporal neurons responded selectively to specific stimuli (exemplars), neurons in the 
prefrontal cortex responded as if they were representing the category: these neurons 
responded similarly to perceptually distinct exemplars that were members of the same 
category, but very differently to perceptually similar exemplars that spanned the category 
boundary.

Follow-up studies have found that, even within a single brain region, neurons are 
capable of storing both specific exemplars and category-level abstractions. Hippocampal 
neurons, for example, have been shown to encode not only specific learning instances 
(O’Reilly & Munakata, 2000) but also category-level information. Hampson and col-
leagues (2004) trained monkeys to group stimuli into arbitrary categories and found that, 
rather than ‘encoding a mere verbatim representation of individual sensory elements,’ 
hippocampal neurons also responded selectively to category-level features (p. 3184). In 
the Freedman et al. (2003) work cited above, though the majority of inferior temporal 
neurons responded to specific stimuli, some of these neurons responded at the category 
level instead. Because these category-specific inferior temporal neurons responded more 
slowly than the category-specific prefrontal neurons, some researchers have argued that 
a feedback loop exists between these two regions, perhaps allowing the prefrontal cortex 
to feed top-down category-level information back to the inferior temporal cortex (Meyers 
et al., 2008).

While studies at the level of individual neurons are more commonly done in animals, 
similar findings have been reported for humans as well. Direct recordings in the human 
medial temporal lobe have found hippocampal neurons that respond selectively to stim-
uli at the category level – firing similarly to many perceptually distinct exemplars of the 
same person, for example (Kreiman et al., 2000). Further, brain imaging studies have 
found that, just like in monkeys, the human inferior temporal cortex responds more for 
specific exemplars, while human prefrontal cortex responds more to categories and 
abstract features (Jiang et al., 2007).

As we have outlined above, one way the brain can implement exemplars plus abstrac-
tions is by having different regions or ensembles of neurons respond and represent dif-
ferent levels of structure; another is by having different processing systems operate at 
different rates. While fast learning from specific exemplars is clearly advantageous, the 
brain also needs a mechanism to detect the higher-level structures that only emerge 
across experiences (something we refer to as abstraction). Miller and Buschman (2007) 
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have proposed that the brain accomplishes a balance between fast learning from specific 
exemplars and slow learning of the structure across them by ‘having fast plasticity mech-
anisms (large changes in synaptic weights) in subcortical structures train slower plastic-
ity (small weight changes) in cortical networks’ (Seger & Miller, 2010, p. 210).

So, just as Ambridge urges readers not to dismiss his radical exemplar theory simply 
because it is not compatible with the declarative-procedural model, we urge you not to 
dismiss abstractions simply because the brain has a lot of storage space and one fMRI 
study found an exemplar model explained brain imaging data better than a prototype 
model (Mack et al., 2013).

We agree that the brain’s storage capacity is ‘very large’ and, in principle, any input 
information could be stored, but we also cannot ignore what evidence from human 
behavior suggests: we cannot and do not store everything. A tighter bottle-neck to cogni-
tive performance is likely to be found in selective attention to input information rather 
than in the potential capacity for storage. Human vision has a surprisingly narrow band 
of foveal focus (see Rayner, 2009 for a review of eye-movements in cognitive process-
ing), and a large literature on the acquisition of categories highlights that learners’ real-
time gaze is typically limited to only dimensions under active consideration (Rehder & 
Hoffman, 2005; Shepard et al., 1961). This is in line with learners’ strong preference to 
assign category membership to novel stimuli based on limited abstract features rather 
than holistic ‘resemblance’ sorting (Medin et  al., 1987). Even at the lowest levels of 
speech generalization, listeners do not store the fine-grained phonetic detail that would 
be required on a purely exemplar account for any appreciable length of time (Caplan 
et  al., 2019; Jesse & McQueen, 2011). Adaptation to speech variability is limited to 
abstractions extracted from first-exposure to a speaker rather than a statistical or exem-
plar accumulation of total experience (Kraljic & Samuel, 2007).

If a radical exemplar model is to account for these phenomena, let  alone the full 
gamut of processing results in semantics, syntax, morphology, and phonology, it would 
need to store representations which are far far richer than even proponents of classic 
exemplar models normally argue for. The crux of the radical exemplar approach is the 
existence of an on-the-fly calculation which can account for all phenomena attributed to 
stored abstractions plus more. However, the number of features that the would-be calcu-
lation requires blows up with every new language task.

Even assuming the brain can store all this, it is questionable whether computing across 
all these features on-the-fly every time an utterance is to be produced is computationally 
tractable. The examples which Ambridge cites are nothing more than proof of concept, 
and none has been shown to work at scale. If they did, natural language processing 
(NLP) may have been solved decades ago – the modern state-of-the-art paradigm for 
most NLP tasks, deep learning, is essentially souped up connectionism with massive 
parameter spaces and back propagation. Deep learning models do not aim to accurately 
represent individual input items and rather achieve their performance by learning com-
plex non-linearly separable abstract classes, for example vector representations of lexical 
items (Devlin et  al., 2018; Mikolov et  al., 2013). As Le (2013) shows, individual  
‘neurons’ in deep neural nets respond to abstract visual stimuli such as a cat face, a com-
putational analogy to Freedman et al.’s cat-representing neuron. Information compres-
sion, not rich representations of individual training items, is a crucial concept in deep 
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learning, even for models which are designed to remember some aspects of individual 
inputs (Amodei et al., 2016).

So Ambridge’s radical exemplar approach turns out to be less biologically, psycho-
logically, and computationally plausible than he suggests. The premise that exemplars 
alone, plus on-the-fly calculation, can more parsimoniously account for all the empirical 
evidence than a model incorporating some kind of stored abstraction becomes tenuous 
when one concretely works out what kinds of information would have to be included.
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