Large Vision Models at Scale

A 3.5 week journey to serve hundreds of models in production

Agenda

- 1 Intro
 Who are we?
- 2 Identity Verification Why automate it?
- High Performance at Scale How do we get there?
- 4 Actionable LoRA
 How can you use it?

Agenda

- 1 Intro
 Who are we?
- 2 Identity Verification Why automate it?
- How do we get there?
- Actionable LoRA
 How can you use it?

simplify identity for everyone.

Onfido's 3 layers of identity verification

Do you have a **genuine** ID?

Are you a real life human?

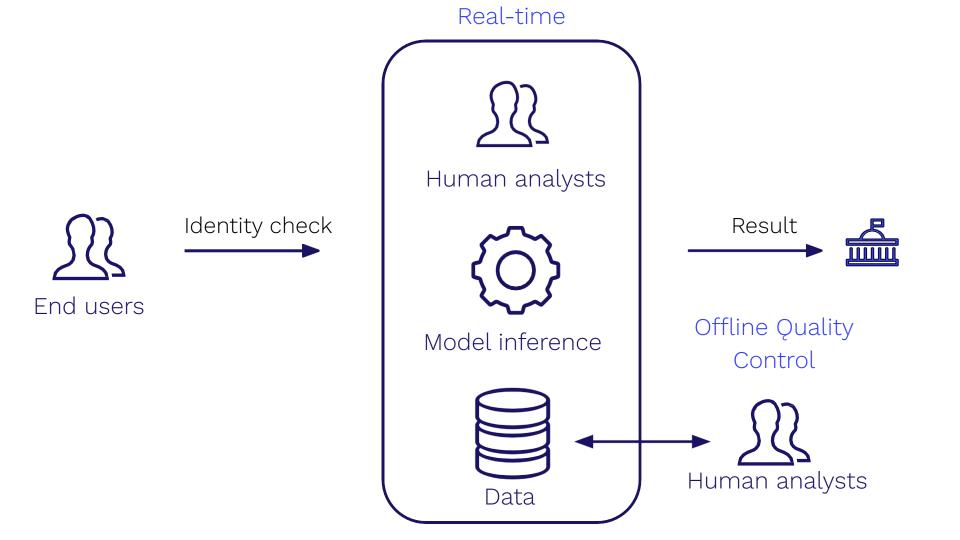
Does your face **match** your ID?

2

3

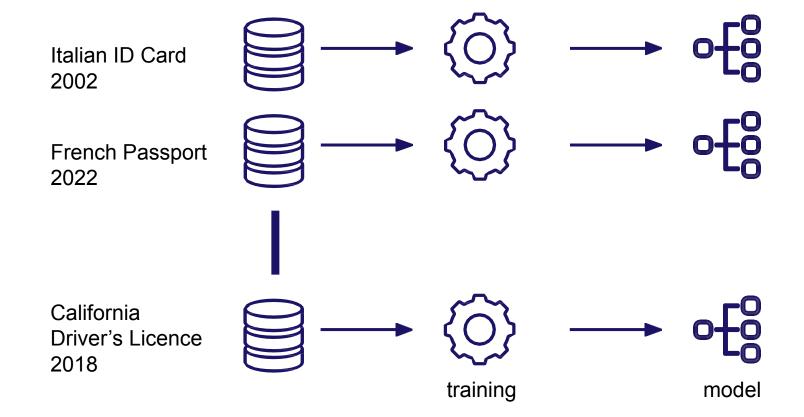
Agenda

- 1 Intro
 Who are we'
- 2 Identity Verification
 How is our system structured?
- High Performance at Scale How do we get there?
- Actionable LoRA
 How can you use it?



Focusing on Document Verification

Current Status



Agenda

- 1 Intro Who are we
- 2 Identity Verification Why automate it?
- High Performance at Scale How do we get there?
- Actionable LoRA
 How can you use it?

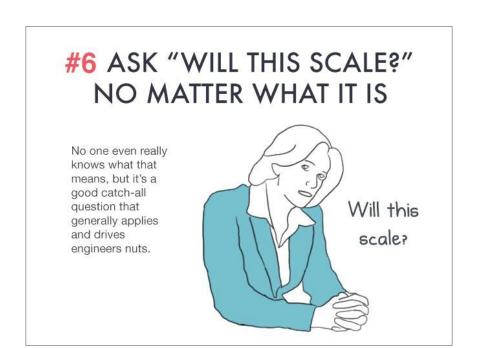
2x in accuracy

Transformer-based vision model

2 Single model per doc-type

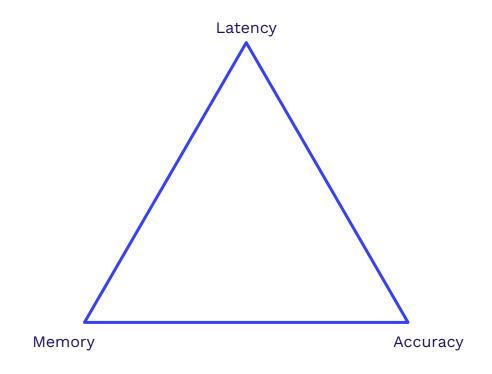
Naive approach

- Load the entire finetuned model onto the GPU at half precision
- ~4 models per GPU



From "Tricks to Appear Smart in Meetings"

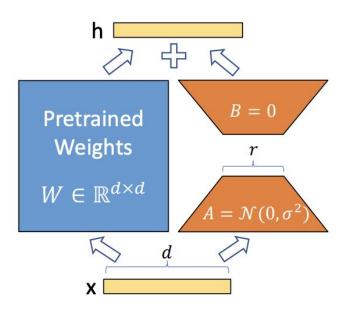
The Classic Trilemma



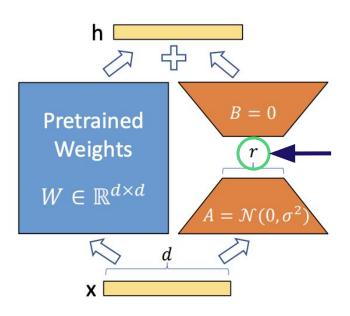
Memory

Enter LoRA

a PEFT technique



Enter LoRA



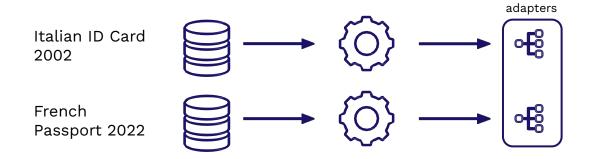
LoRA example

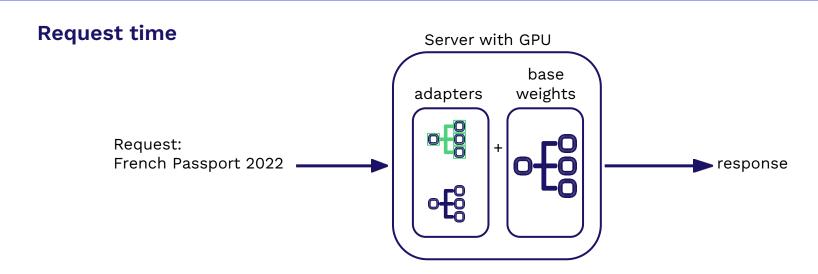
OS HF model

```
(encoder): ViTEncoder(
 (layer): ModuleList(
   (0-11): 12 x ViTLayer(
      (attention): ViTAttention(
        (attention): ViTSelfAttention(
          (query): Linear(
            in_reatures=708, out_features=768, bias=True
            (lora dropout): ModuleDict(
              (default): Dropout(p=0.1, inplace=False)
            (lora A): ModuleDict(
              (default): Linear(in_features=768, out_features=16, bias=False)
            (lora_B): ModuleDict(
              (default): Linear(in_features=16, out_features=768, bias=False)
            (lora embedding A): ParameterDict()
            (lora_embedding_B): ParameterDict()
```

https://github.com/lucapericlp/lora-latencies/blob/master/LoRA adapter merging.ipvnb

Training time



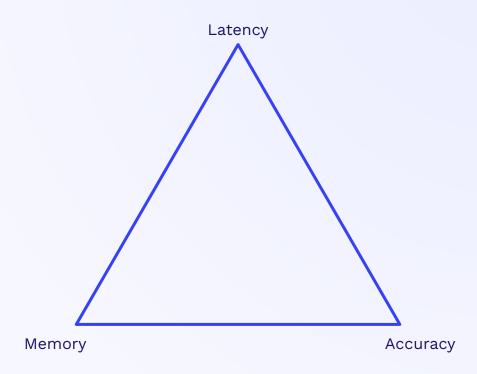


Solving the scaling problem

1 GPU node efficiency

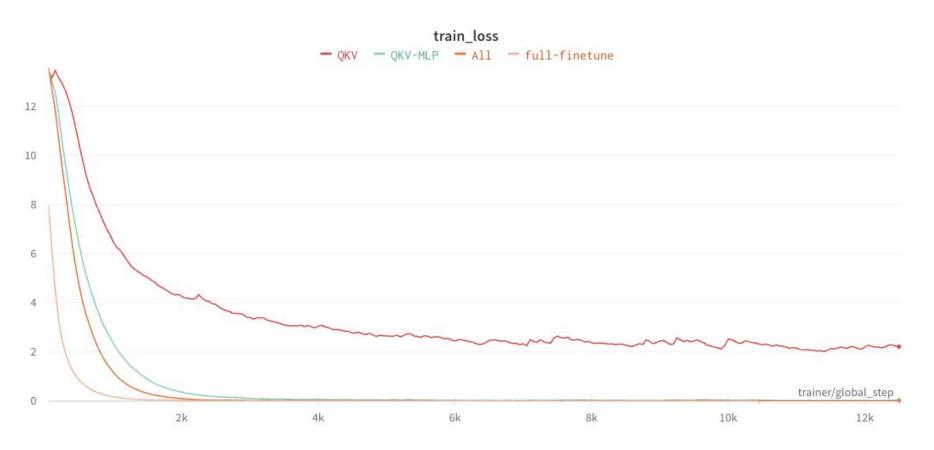
2 Maximise flexibility

But what do the tradeoffs look like?

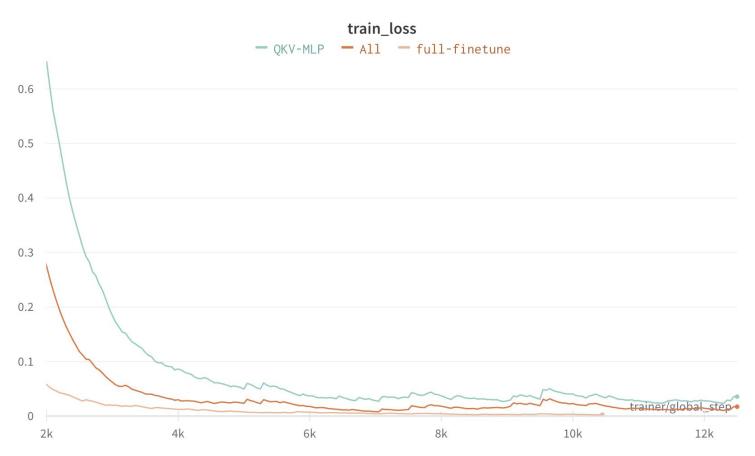


Accuracy

adapt everywhere?



adapt everywhere?



document verification task evaluation

Document Type	r=8	r=16	r=32	r=64
Document A	-0.59pp	-0.75pp	-0.29pp	-0.38pp
Document B	-3.1pp	-3.02pp	-3.1pp	-3.31pp
Document C	-40.71pp	-41.21pp	-37.54pp	-35.62pp
Document D	-2.32pp	-1.77pp	-1.92pp	-1.73pp
Document E	-4.36рр	-3.82	-3.38pp	-3.67pp

document verification task evaluation

Document Type	r=8	r=16	r=32	r=64
Document A	-0.59pp	-0.75pp	-0.29pp	-0.38pp
Document B	-3.1pp	-3.02pp	-3.1pp	-3.31pp
Document C	-40.71pp	-41.21pp	-37.54pp	-35.62pp
Document D	-2.32pp	-1.77pp	-1.92pp	-1.73pp
Document E	-4.36pp	-3.82	-3.38pp	-3.67pp

Using r=64 & adapting everything

Final results

Longer is better

Document Type	10 epochs	20 epochs	35 epochs
Document A	-0.38pp	-0.17pp	+0.3pp
Document B	-3.31pp	-2.02pp	-0.65pp
Document C	-35.62pp	-3.54pp	-1.84pp
Document D	-1.73pp	-1.3pp	-0.84pp
Document E	-3.67pp	-2.35pp	-0.88pp

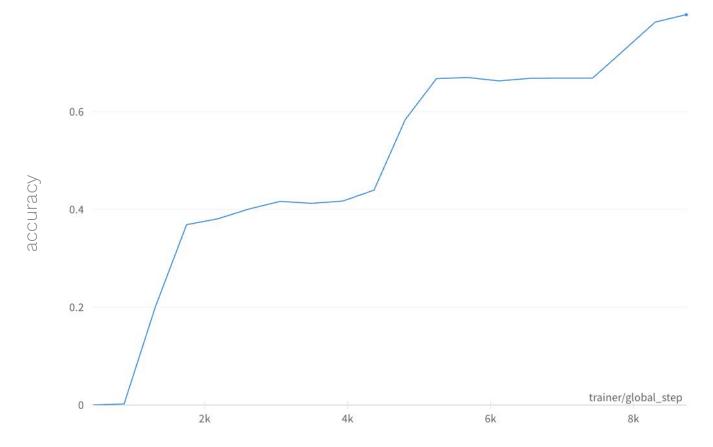
Final results

Longer is better

Document Type	10 epochs	20 epochs	35 epochs
Document A	-0.38pp	-0.17pp	+0.3pp
Document B	-3.31pp	-2.02pp	-0.65pp
Document C	-35.62pp	-3.54pp	-1.84pp
Document D	-1.73pp	-1.3pp	-0.84pp
Document E	-3.67pp	-2.35pp	-0.88pp

The Chart

for Document C

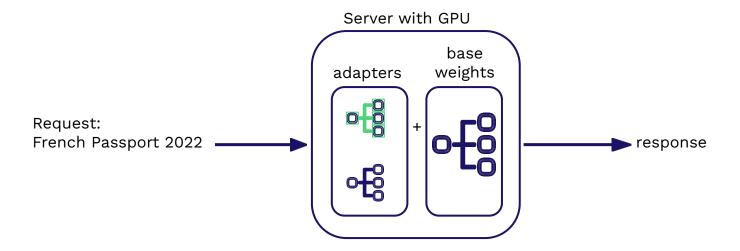


Final results

Using r=64, adapting everything & training for longer

Latency

Remember this?



```
f set_adapter

( adapter_name: str )

Sets the active adapter.
```

Initial results

Using local machine & server-side tracing

+80%

Initial results

Using local machine & server-side tracing

+80%

+100sMb

latency increase

buffer memory

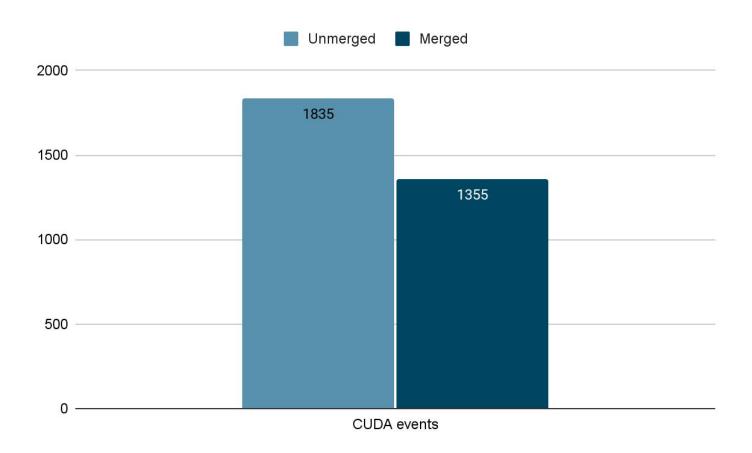
```
(encoder): ViTEncoder(
 (layer): ModuleList(
   (0-11): 12 x ViTLayer(
     (attention): ViTAttention(
        (attention) ViTSelfAttention(
         (guery): Linear(
           in_reacures=700, out_features=768, bias=True
           (lora dropout): ModuleDict(
             (default): Dropout(p=0.1, inplace=False)
           (lora_A): ModuleDict(
             (default): Linear(in_features=768, out_features=16, bias=False)
           (lora_B): ModuleDict(
             (default): Linear(in features=16, out features=768, bias=False)
            (lora_embedding_A): ParameterDict()
            (lora embedding B): ParameterDict()
```

https://github.com/lucapericlp/lora-latencies/blob/master/LoRA adapter merging.ipynb

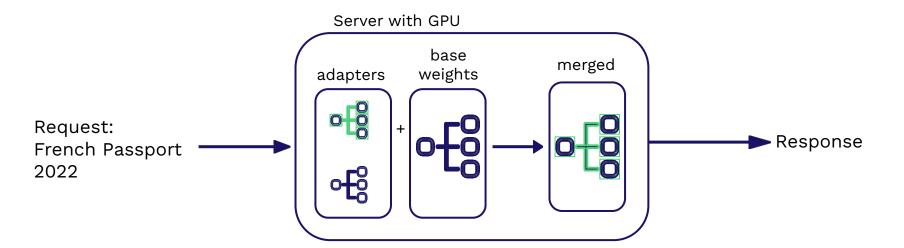
Merging


```
[65] q_one = inference_model.base_model.model.vit.encoder.layer[0].attention.attention.query
     lora_a_linear = q_one.lora_A["default"].weight
     lora b linear = g one.lora B["default"].weight
     lora_a_linear.shape, lora_b_linear.shape
    (torch.Size([16, 768]), torch.Size([768, 16]))
[66] delta_weights = lora_b_linear @ lora_a_linear
    delta weights.shape
    torch.Size([768, 768])
[67] merged_q_one = q_one.weight.data + delta_weights
    merged_q_one.shape
    torch.Size([768, 768])
```

Inspection



What it really looks like



Toggling adapters

```
def run(self, request: Request):
    if self.model.active_adapter != request.adapter:
        self.model.unmerge_adapter()
        self.model.set_adapter(request.adapter)
        self.model.merge_adapter()
    result = self.model.inference(request.data)
    return Response(result)
```

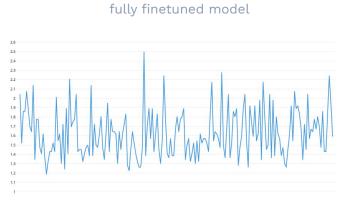
Revisited results

Using local machine & server-side tracing

+1.5%
latency increase

Load response

in production, targeting 5 doc types



p95: 1.69s

p95: 1.77s (+0.08s)

Results

-97.5% hardware regs

~80ms
latency increase

< 1.0pp
accuracy decrease

Agenda

- 1 Intro Who are we
- 2 Identity Verification Why automate it?
- How do we get there?
- 4 Actionable LoRA
 How can you use it?

Takeaways

- Adapt everything
- Higher rank is better (w/ diminishing returns)
- peft is great
- Increase batch size, train for longer
- Alpha parameter YMMV
- Merge & unmerge adapters at request time

Software Engineer - (Machine Learning)

APPLY FOR THIS JOB

Remote - United Kingdom

Technology - Engineering / Full-Time / Remote

More resources

- https://lightning.ai/pages/community/lora-insights/
- <u>https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms</u>
- https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an_ -in-depth-analysis-with-llama-2
- https://arxiv.org/abs/2305.14314
- <u>Empirical Analysis of the Strengths & Weaknesses of PEFT Techniques for</u> LLMs
- A Comparative Study between Full-Parameter and LoRA-based Fine-Tuning

More resources

Over 3.5 weeks, I worked on serving hundreds of transformer-based vision models at scale via LoRA @Onfido with the aim of preserving as much accuracy as possible.

These are 5 resources that I found particularly helpful

4:15 PM · Nov 28, 2023

...

Takeaways

- Adapt everything
- Higher rank is better (w/ diminishing returns)
- peft is great
- Increase batch size, train for longer
- Alpha parameter YMMV
- Merge & unmerge adapters at request time